UC San Diego researchers awarded two grants for investigating stem cell-based therapies

The governing board of the California Institute for Regenerative Medicine (CIRM) unanimously approved this week two grants worth more than $2.2 million to University of California San Diego School of Medicine researchers investigating stem cell-based therapies for a rare genetic disorder that affects the heart and a chronic, progressive affliction of the lungs.

The first grant for almost $1.4 million was awarded to cardiologist Eric Adler, MD, professor of medicine, director of cardiac transplant and mechanical circulatory support at UC San Diego Health and member of the UC San Diego CIRM Alpha Stem Cell Clinic, to pursue the use of genetically modified hematopoietic stem cells to treat Danon disease, a progressive condition characterized by weakening of the heart muscle, weakening of muscles used for movement and cognitive disability.

In many cases, Danon disease is inherited from a parent, and is often misdiagnosed and treated as heart failure. The condition involved dysfunction in lyposomes -; organelles found in nearly all animal cells that contain enzymes used to break down many kinds of biomolecules. There is no cure and, in the case of the heart, the condition is fatal unless a heart transplant is performed.

Adler is one of the few researchers in the United States studying the condition. His CIRM grant will support further research into using genetically modified hematopoietic stem cells, which give rise to other blood cells, to treat the condition.

The second CIRM grant for $865,282 (with a recommendation of an additional $527,918 to be awarded at the October board meeting) went to James Hagood, MD, pediatric pulmonologist and chief of pediatric respiratory medicine at Rady Children's Hospital-San Diego and chief of the Division of Respiratory Medicine in the Department of Pediatrics at UC San Diego School of Medicine, to investigate the use of mesenchymal stem cell extracellular vesicles (MSC-EV) as a therapy for pulmonary fibrosis. The latter is a lung disease that occurs when lung tissue becomes damaged and scarred, making it more difficult for the organ to work properly. Current therapies can ease symptoms, such as shortness of breath, dry cough and fatigue, but the damage cannot be repaired.

Mesenchymal stem cells can differentiate into a variety of cell types, from bone and cartilage to muscle and fat. Extracellular vesicles are cell-derived membranous structures that carry information between cells. They play a key role in the development and progression of many pulmonary diseases, including fibrosis. MSC-EV are already entering clinical trials for a number of diseases. In this case, the researchers want to better understand how MSC-EV function and how they can be modified to maximize their anti-fibrotic potential.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New CAR T-cell therapy shows promise against aggressive HER2+ breast cancer