New method to visualize small-molecule interactions inside cells

Like people in a large company, proteins in cells constantly interact with each other to perform various jobs. To develop new disease therapies, researchers are trying to control these interactions with small-molecule drugs that cause specific proteins to associate more or less with their "coworkers." Now, researchers reporting in ACS' journal Analytical Chemistry have developed a method to visualize whether drugs are regulating protein-protein interactions inside cells.

Seeing small-molecule interactions inside cells - Headline Science

The ability to control interactions among proteins could be a powerful tool to treat disease. For example, a small-molecule drug called lenalidomide is used to treat multiple myeloma. It binds simultaneously to two proteins -- cereblon and Ikaros -- that normally wouldn't interact, bringing them together to disrupt cancer cell function. Scientists have developed several fluorescence-based assays to study such activity, but they often rely on small changes in fluorescence that can be difficult to detect in living cells. Xiaokun Shu and colleagues wondered if they could devise a new method that would produce a strong, readily observable fluorescent signal when small molecules cause proteins to interact in cells.

To develop their assay, the researchers made use of the known interactions among lenalidomide, cereblon and Ikaros. They genetically engineered human cells to produce cereblon and Ikaros, each with an attached green fluorescent protein (GFP). They also added sequences to the proteins that would cause four or six copies of each protein to associate together. This way, when cereblon and Ikaros did interact with each other, the GFP signal would be greatly amplified. In the absence of lenalidomide, the cells showed a faint, diffuse green fluorescence. However, when the team added lenalidomide to the cells, thousands of GFP-containing proteins coalesced into highly concentrated bright green droplets. And by tweaking the system, the researchers could detect when a small molecule disrupted the interaction between two other proteins by observing the disappearance of intense fluorescent spots. The ability to readily detect these interactions in cells could aid drug screening, the researchers say.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Researchers uncover magnesium’s crucial role in cellular energy production