Algorithms could help improve effectiveness of cancer treatment by predicting gene interactions

While network algorithms are usually associated with finding friends on social media, researchers at the University of Sussex have shown how they could also be used improve the effectiveness of cancer treatment, by predicting the interactions between genes.

There are over 12 million newly diagnosed cases of cancer globally each year and this figure only continues to grow.

Existing treatments like chemotherapy involve non-selective agents that have limited effectiveness and strong side-effects. As a result, scientists believe there is a desperate need for improved treatments which are more personalized and more targeted towards cancerous cells.

There are a number of targeted cancer therapies already being developed that exploit a gene relationship called 'synthetic lethal interactions'. The trouble is, up until now, relatively few of these interactions have been identified.

Thanks to the use of artificial intelligence, researchers at the University of Sussex, working with a team from the Institute of Cancer Research in London, have successfully created an algorithm which can now predict where these interactions may occur.

Graeme Benstead-Hume, a doctoral student at the University of Sussex, said: "Synthetically lethal means that cells can cope if either one of its proteins does not work, but will die if neither of the proteins is functioning.

"These relationships are important because they can be used to identify where potential drug treatments could target just the cancer cells yet leave healthy cells unharmed, creating a more effective, gentler treatment.

"With breast cancer, we've already seen that these more personalised therapies can be achieved by finding synthetically lethal pairs of proteins. The only problem is that there are many millions of potential pairs and finding new ones is both difficult and time-consuming.

"Thankfully, our algorithm, Slant, can now address this."

Slant uses data already available to identify patterns associated with being part of a synthetic lethal interaction.

By searching across an expansive protein network for similar patterns, it's able to effectively predict new synthetically lethal pairs. These predictions were validated by the researchers back in the laboratory and are now publicly available on a newly created database called Slorth, which allows clinicians and researchers to quickly search for a particular gene or drug, and identify whether a synthetic lethal interaction might occur.

This innovative computational approach has now been published in the journal PLOS Computational Biology.

Dr Frances Pearl, corresponding author on the paper, said: "This work just shows how emerging technology and artificial intelligence can rapidly speed up the work that can lead to new treatment strategies for diseases like cancer.

"By predicting interactions between genes, we have sped up a process that would have been incredibly time consuming."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Adding high-dose IV vitamin C to chemotherapy can boost survival for pancreatic cancer patients