Closed-loop brain stimulator based on sweat response for PTSD patients

For 8-million adults who suffer from post-traumatic stress disorder in any given year, medication and cognitive therapy have been the treatment protocol. Now, University of Houston assistant professor of electrical engineering Rose T. Faghih is reporting in Frontiers in Neuroscience that a closed-loop brain stimulator, based on sweat response, can be developed not only for PTSD patients, but also for those who suffer an array of neuropsychiatric disorders.

Sweat primarily helps maintain body temperature; however, tiny bursts of sweat are also released in response to psychologically arousing stimuli. Tracking the associated changes in the conductivity of the skin, which can be seamlessly measured using wearables in real-world settings, thus provides a window into a person's emotions."

Rose T. Faghih, assistant professor of electrical engineering, University of Houston

For people with movement disorders like Parkinson's disease and essential tremor, who have not responded to medication, application of high-frequency electric current to the brain, or deep brain stimulation, is regarded as most effective. Electrodes are placed in certain areas of the brain to regulate abnormal functions and a pacemaker-like device, placed in the upper chest, controls the amount of stimulation the brain receives.

Open-loop stimulators, the most widely-used, deliver continuous stimulation until manually re-adjusted by a physician. Closed-loop stimulators, which provide stimulation in response to biomarkers of pathologic brain activity, have been developed for movement disorders, but are yet to be explored for the treatment of neuropsychiatric disorders.

Signaling the onset of a PTSD episode, skin develops the tiniest sheen of perspiration. That symptom of the body's fight or flight response signals a change in the skin's electrical conductivity and provides a window into the brain's state of emotional arousal.

Using skin conductance to create the framework for a deep brain stimulator seemed logical to Faghih after reviewing group studies of Vietnam combat veterans with PTSD. Among the findings, PTSD subjects had the largest skin conductance responses when confronted with combat-related words. In a similar study comparing Vietnam combat veterans with and without PTSD and non-combat controls, PTSD veterans had the highest baseline skin conductance levels.

"Skin conductance additionally has the advantage of being easily measured with wearable devices that afford convenience, seamless integration into clothing and do not involve risk of surgically implanted sensors," said Faghih.

The ultimate goal will be to develop closed-loop prototypes that can eventually be used for treating patients in a variety of neuropsychiatric disorders. Faghih's graduate researchers Dilranjan Wickramasuriya and Md. Rafiul Amin were first and second authors, respectively, of the article.

This project was supported, in part, by a grant from the National Science Foundation.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study finds key brain markers for gaming addiction in adolescents