Researchers identify gene mutation combo linked to endometrial cancer

Michigan State University researchers, in collaboration with the Van Andel Institute, have identified a combination of two gene mutations that is linked to endometrial cancer.

"More than 63,000 women are likely to be diagnosed with endometrial cancer this year, making it the most commonly identified type of gynecologic cancer," said Ronald Chandler, an assistant professor of obstetrics, gynecology and reproductive biology in the College of Human Medicine, who led the study.

The research, published in Nature Communications, found that mutations of the ARID1A and PIK3CA genes are frequently found together in the development of endometrial cancer, as well as in endometriosis-associated ovarian cancer. The findings could mean that better, more targeted treatments can be developed to help fight the disease.

ARID1A is a tumor suppressor. When it mutates, chromatin, cellular material that keeps DNA compacted in cells, loses its structure, allowing cancer to spread. PIK3CA is an instructional gene that tells the body to produce certain proteins and leads to uncontrolled growth of cells when it mutates.

Similarly, these same mutations often are found in women who have endometriosis - a painful condition in which uterine tissue grows outside the uterus - but many of those affected never develop endometrial cancer.

"We're trying to understand why some women with the same set of mutations get cancer and some don't," Chandler said. "There is something else involved."

Endometrial cancer commonly occurs in women after menopause, suggesting that other factors, such as hormonal changes, environmental exposures or obesity, could combine with the mutations to trigger cancer.

"The hardest part of our job is figuring out what's causing it," Chandler said. "Is it something in the environment or it is something else? It's a complex process. These are big questions that we're trying to address."

Through a collaborative effort, Chandler's team provided genetic material to Van Andel Institute. VAI researchers then analyzed the samples with a next-generation sequencer, a machine that rapidly sequences the human genome. This helped MSU researchers identify which gene mutations were associated with the cancer.

Ten years ago, this research would not have been possible. Next-generation sequencers are powerful new tools we can use to process large-scale projects and provide actionable results in weeks as opposed to years."

Marie Adams, VAI's genomics core manager and study co-author

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
SPLICER shows promise in Alzheimer's and other diseases