Study uncovers link between dietary zinc and protection against Streptococcus pneumoniae

Researchers have uncovered a crucial link between dietary zinc intake and protection against Streptococcus pneumoniae, the primary bacterial cause of pneumonia.

Globally, it is estimated that nearly two billion people suffer from zinc deficiency, but why this increases susceptibility to bacterial infection has not been well understood – until now.

University of Melbourne Associate Professor Christopher McDevitt, a laboratory head at the Doherty Institute, led an interdisciplinary team using state-of-the-art imaging techniques to reveal how the immune system uses zinc as an antimicrobial for protection during attack by Streptococcus pneumoniae.

Published today in PLOS Pathogens, the team which included University of Adelaide Research Fellow Dr Bart Eijkelkamp, from the Research Centre for Infectious Diseases, compared infections in mice fed with different levels of zinc.

They found that mice with lower zinc intake succumbed to infection up to three times faster because their immune systems had insufficient zinc to aid in killing the bacteria.

Dietary zinc is associated with immune function and resistance to bacterial infection, but how it provides protection has remained elusive.

Our work shows that zinc is mobilized to sites of infection where it stresses the invading bacteria and helps specific immune cells kill Streptococcus pneumoniae."

Dr Bart Eijkelkamp, University of Adelaide

This work also translated its findings by showing that specific human immune cells could use zinc to enhance their killing of invading Streptococcus pneumoniae.

"The findings in this paper are a direct result of application of novel elemental imaging technology to uncover relationships that have previously been hidden to analysis, and a testament to cross-disciplinary collaboration," said Professor Philip Doble, Director of the Elemental Bio-imaging Facility at the University of Technology Sydney, and a co-author of the study.

Pneumonia accounts for more than one million deaths every year, with the greatest health burden in countries where zinc deficiency frequently remains a major social challenge.

"Our findings highlight the importance of ensuring dietary zinc sufficiency as part of any population-wide strategy to control the burden of pneumococcal disease in conjunction with vaccination and other antimicrobial approaches," Associate Professor McDevitt said.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Nanowire-based technology detects cancer-associated miRNAs in urine