Discovery provides potential therapeutic target for prostate cancers with PTEN mutation

PTEN, a tumor suppressor gene mutated in approximately 20% of primary prostate cancers, and in as many as 50% of androgen deprivation-resistant prostate cancers, relies on another gene, ARID4B, to function. These findings were published by George Washington University (GW) Cancer Center researchers in Nature Communications. This discovery provides a potential therapeutic target for prostate cancers carrying the common PTEN mutation.

Loss of the tumor suppressor PTEN due to mutation or deletion not only is frequent in human prostate cancer, but also plays a large role in other cancers. We wanted to find out more about PTEN, and other genes it might rely on, to offer new treatment options for those with the PTEN mutation. We discovered that PTEN has an important connection to the gene ARID4B, which offers a new therapeutic target for treatment."

Ray-Chang Wu, PhD, associate professor of biochemistry and molecular medicine, GW School of Medicine and Health Sciences

Wu, his co-author Mei-Yi Wu, PhD, associate professor of medicine at the GW School of Medicine and Health Sciences, and other members of the research team at the GW Cancer Center examined data from several prostate cancer cohorts and made an interesting observation: cancers which contain PTEN mutations almost always retain ARID4B. One function of the gene ARID4B includes remodeling the chromatin that makes up the chromosome. This "mutually exclusive" pattern between PTEN and ARID4B offers the team the first clue as to its potential importance in prostate cancer.

The research further found that suppression of ARID4B expression in cancer cells with PTEN mutation significantly inhibits cancer cell growth and increases cell death. In comparison, less pronounced effects were observed when cancer cells that contain functional PTEN were used, suggesting a dependence on ARID4B by PTEN-deficient prostate cancer. Importantly, the team is able to recapitulate these findings using the PTEN-deleted prostate cancer mouse models. As expected, deletion of PTEN alone in mice leads to development of prostate cancer. In stark contrast, mice with deletion of both PTEN and ARID4B do not develop tumors. Collectively, these results led the team to conclude that PTEN function depends on the presence of ARID4B and identify ARID4B as a potential therapeutic target in prostate cancer, given loss of the PTEN gene. More research is needed to develop methods to target ARID4B.

Source:
Journal reference:

Wu, R-C. et al. (2019) Identification of the PTEN-ARID4B-PI3K pathway reveals the dependency on ARID4B by PTEN-deficient prostate cancer. Nature Communications. doi.org/10.1038/s41467-019-12184-8.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Researchers uncover key genes linked to DCIS progression