Study reveals key insight into the development of hair bundles

New research reveals a key insight into the development of hair bundles, the intricately complex assemblies in the inner ear responsible for hearing.

Hair bundles are precisely arranged cellular structures deep within the spiral cavity of the inner ear. Together, they convert vibrational energy into electrical signals in the brain that translate into the sensation of hearing. Once they're lost - whether by loud noise, toxins, disease or aging - they do not naturally regenerate in people and other mammals.

The new research led by scientists at Oregon Health & Science University provides important clues that may help scientists develop new techniques to regenerate hair cells and reverse hearing loss.

In the study published in the journal Current Biology, researchers discovered the development of hair bundles occurs in a kind of feedback loop in which form follows function and function drives form.

Using mice, which closely model human hearing, the researchers found stereocilia, roughly 100 of which are assembled into a hair bundle, widened simultaneously with the onset of mechanotransduction - the action of converting mechanical signals in the form of sound into electrical signals measured within the brain. The stereocilia only elongated to their mature lengths after transduction had been established.

It turns out that form and function are mutually reinforcing.

We've been looking at these as separate pathways. But in the course of this research, we observed the change in form occurs at the same time as the conversion of mechanical to electrical signals. So we're seeing these happen together, and feeding each other in a way we hadn't seen before."

Jocelyn Krey, Ph.D., lead author, staff scientist in the Oregon Hearing Research Center and the Vollum Institute at OHSU

The researchers discovered when they examined mice lacking transduction or used a compound to block transduction, the animals did not develop the classic staircase-shaped form of mature hair bundles.

Researchers say the study suggests that new techniques to reverse hearing loss should focus on the critical importance of early development.

In the future, with the rapid development of gene editing tools like CRISPR, we will be able to turn on genes at will. I have no doubt we will be there in 5 or 10 years."

Peter Barr-Gillespie, Ph.D., senior author, professor in the Oregon Hearing Research Center and senior scientist in the Vollum Institute

Barr-Gillespie also serves as OHSU's chief research officer and executive vice president.

Source:
Journal reference:

Krey, J.F., et al. (2020) Mechanotransduction-Dependent Control of Stereocilia Dimensions and Row Identity in Inner Hair Cells. Current Biology. doi.org/10.1016/j.cub.2019.11.076.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Exploring how biological clocks measure aging and predict mortality