Scientists discover a new way to combine coding languages into single "bilingual" molecule

The nucleic acids of DNA encode genetic information, while the amino acids of proteins contain the code to turn that information into structures and functions. Together, they provide the two fundamental codes underlying all of life.

Now scientists have found a way to combine these two main coding languages into a single "bilingual" molecule.

The Journal of the American Chemical Society published the work by chemists at Emory University. The synthesized molecule could become a powerful tool for applications such as diagnostics, gene therapy and drug delivery targeted to specific cells.

Much like a translator enables communication between two people from different regions of the world, we envision that our bilingual molecule will enable us to mediate new forms of communications between nucleic acids and proteins in the cellular environment."

Jennifer Heemstra, study senior author and associate professor of chemistry, Emory University

Nucleic acids store information in an "alphabet" of four bases, known as nucleotides. Peptides and proteins use an entirely different alphabet, made up of 20 different amino acids.

"The nucleic acid language is easy to speak, but kind of limited," Heemstra says. "While the protein language is incredibly complex and difficult to predict. Both of these molecules have developed exquisite properties over billions of years of evolution."

Previously synthesized molecules have focused on the properties of either nucleic acids or amino acids. The Emory researchers wanted to harness the powers of both information systems within a single molecule.

The challenge was enormous, drawing on techniques from organic chemistry, molecular and cellular biology, materials science and analytical chemistry. The researchers built a protein scaffold and then attached functioning fragments of nucleotides and amino acids to this framework.

"The two different codes needed to be synthesized separately and then brought together into the scaffold," says Colin Swenson, first author of the paper and a graduate student in Heemstra's lab.

The resulting bilingual molecule is stable, made of inexpensive materials, and highly generalizable, giving it the potential for diverse biomedical and nanotechnology applications.

"It's like a programmable, universal adaptor that brings proteins and nucleic acids together," Heemstra says. "We hope that other researchers are inspired to think about different ways that it might be applied."

The Emory chemists are now exploring using the bilingual molecule for targeted drug delivery to particular cells.

"It's essentially a stimuli-sensitive container," Heemstra says. "We've demonstrated that it can bind to drug molecules. And it's programmable to fall apart in the presence of specific RNA molecules that are more abundant in cancer cells."

Source:
Journal reference:

Swenson, C. S. et al. (2019) Bilingual Peptide Nucleic Acids: Encoding the Languages of Nucleic Acids and Proteins in a Single Self-Assembling Biopolymer. Journal of the American Chemical Society. doi.org/10.1021/jacs.9b09146.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Novel drug molecule offers hope for early Parkinson's disease treatment