New animal model for COVID-19

As the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to ravage the world, scientists are frantically searching for a vaccine or new drug that will effectively counter the lethal effects of the virus that leads to COVID-19 disease.

Now, new research from the University of Texas Medical Branch at Galveston and published on the preprint server bioRxiv* shows SARS-CoV-2 replication and respiratory disease can be produced in African green monkeys using a much lower and more natural dose of SARS-CoV-2 than has been employed in other non-human primates studies.

Novel Coronavirus SARS-CoV-2 Colorized scanning electron micrograph of an apoptotic cell (green) heavily infected with SARS-COV-2 virus particles (yellow), isolated from a patient sample. Image captured at the NIAID Integrated Research Facility (IRF) in Fort Detrick, Maryland. Credit: NIAID
Novel Coronavirus SARS-CoV-2 Colorized scanning electron micrograph of an apoptotic cell (green) heavily infected with SARS-COV-2 virus particles (yellow), isolated from a patient sample. Image captured at the NIAID Integrated Research Facility (IRF) in Fort Detrick, Maryland. Credit: NIAID

This news article was a review of a preliminary scientific report that had not undergone peer-review at the time of publication. Since its initial publication, the scientific report has now been peer reviewed and accepted for publication in a Scientific Journal. Links to the preliminary and peer-reviewed reports are available in the Sources section at the bottom of this article. View Sources

Why are animal models useful?

An effective vaccine is the only way to ensure COVID-19 is totally eradicated. A detailed understanding of how the virus achieves its damaging effects, and of the illness itself, are fundamental to building a vaccine or drug. Such vaccines need to be tested in animals during preclinical studies to reveal any potential adverse severe effects and find an effective dosage.

However, SARS-CoV viruses show a propensity to unwanted immune activation following immunization with candidate vaccines of various types. These include inactivated whole virus, recombinant DNA subunit, virus-like particles, and live attenuated virus based on vector use.

The same type of hypersensitivity reaction to the virus is also seen after the induction of infection in experimental animals. The close similarity between SARS-CoV and SARS-CoV-2 mandates careful evaluation of any candidate vaccine before it enters human trials.

This, in turn, means that a suitable animal model is essential to rule out such immune complications before such vaccines are commercially released. Such models will also help uncover the mechanics of disease spread and virus-immune interactions.

Features of an ideal animal model

Many animal models allow SARS-CoV-2 replication and also develop non-fatal illness to varying degrees after exposure to the virus through their respiratory tracts. These include mice, hamsters, ferrets, and non-human primates (NHPs).

Each of these models is useful in one or more ways to study the virus and the illness. However, NHPs are more reliable when it comes to comparing the host responses to infection in humans because of their genetic similarity. This also underlies the development of reagents to study the immune response.

It was in the recent weeks that the earliest assessment of the utility of Rhesus and cynomolgus macaques was reported. The difference in clinical features in these two NHPs indicates a greater suitability of some species compared to others, to serve as human models of CoV infection.

African Green Monkeys as a SARS-CoV-2 model

For the earlier SARS-CoV, African green monkeys (AGM) supported viral replication most efficiently, compared to Rhesus and Cynomolgus macaques, and only the first species showed significant replication in the lower respiratory tract after inoculation with SARS-CoV. The autopsy findings in these animals also showed features of disease similar to that in humans. They also have the same viral receptor, ACE2.

These features brought them to the attention of researchers in the current study. The animals were inoculated with a low-passage isolate of SARS-CoV-2 to test their potential as a model for this infection. The strain used was from the first clinical case in Italy, and the first virus from clade V to be used to induce experimental infection in NHPs.

The AGMs are shown to replicate several aspects of disease in humans, including high levels of viral replication and pneumonic lesions. Thus, this is a suitable model to study the process of disease in humans as well as to screen potential vaccines and therapeutics.

The researchers found that at 0, 2, 3, 4, 5, 7, 9, 12, 15, and 21 days following inoculation with the Italian isolate by both intratracheal and intranasal instillation, no clinical signs of disease were found. Imaging was also inconclusive. Three of the animals were sacrificed on day 5 but showed some signs of pneumonia with hyperemia.

Nasal secretions showed viral RNA and infectious viral particles in three animals, but the rectal swab in one animal only showed infectious viruses, while another two showed viral RNA. All animals showed the presence of both in bronchoalveolar lavage fluid, but not in plasma.

Inflammatory markers were increased, including IL-8, IL-10, IL-12, and IL-6. The latter is an activator of inflammatory pathways and predicts respiratory failure in humans with COVID-19. Fibrinogen levels were high, as is in keeping with the known role of IL-6 in fibrinogen synthesis as an acute phase change, and the presence of bleeds in the lungs.

AGM Model Helps Clarify Some Diagnostic Points

Overall, the AGMs failed to show signs of overwhelming illness, even while there were changes in the lungs and the blood, showing that the animals were suffering infection with systemic responses. The failure of chest X-rays to show changes in keeping with the lung lesions has implications for the reliability of this imaging technique as a screening method for humans as well. The use of CT scans or plethysmography could be a more dependable way to visualize lung lesions in animal models.

A second exciting sidelight is the presence of gut lesions in infected AGMs, as has been noted in humans as well. This reflects the expression of the ACE2 receptor in the gut epithelium as well. Despite the presence of such injury, there were no overt gut-related symptoms, except for a loss of appetite in most animals around the third day from infection.

The study shows that “infection of AGMs with SARS-CoV-2 results in the release of inflammatory mediators with similar immune signatures as human cases.” The changes in laboratory parameters and markers of inflammation underline the utility of this model in the study of the host response to COVID-19.

This news article was a review of a preliminary scientific report that had not undergone peer-review at the time of publication. Since its initial publication, the scientific report has now been peer reviewed and accepted for publication in a Scientific Journal. Links to the preliminary and peer-reviewed reports are available in the Sources section at the bottom of this article. View Sources

Journal references:

Article Revisions

  • Mar 21 2023 - The preprint preliminary research paper that this article was based upon was accepted for publication in a peer-reviewed Scientific Journal. This article was edited accordingly to include a link to the final peer-reviewed paper, now shown in the sources section.
Dr. Liji Thomas

Written by

Dr. Liji Thomas

Dr. Liji Thomas is an OB-GYN, who graduated from the Government Medical College, University of Calicut, Kerala, in 2001. Liji practiced as a full-time consultant in obstetrics/gynecology in a private hospital for a few years following her graduation. She has counseled hundreds of patients facing issues from pregnancy-related problems and infertility, and has been in charge of over 2,000 deliveries, striving always to achieve a normal delivery rather than operative.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Thomas, Liji. (2023, March 21). New animal model for COVID-19. News-Medical. Retrieved on November 22, 2024 from https://www.news-medical.net/news/20200519/New-animal-model-for-COVID-19.aspx.

  • MLA

    Thomas, Liji. "New animal model for COVID-19". News-Medical. 22 November 2024. <https://www.news-medical.net/news/20200519/New-animal-model-for-COVID-19.aspx>.

  • Chicago

    Thomas, Liji. "New animal model for COVID-19". News-Medical. https://www.news-medical.net/news/20200519/New-animal-model-for-COVID-19.aspx. (accessed November 22, 2024).

  • Harvard

    Thomas, Liji. 2023. New animal model for COVID-19. News-Medical, viewed 22 November 2024, https://www.news-medical.net/news/20200519/New-animal-model-for-COVID-19.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study finds nirmatrelvir-ritonavir reduces severe COVID-19 and long COVID risks in high-risk patients