Heparin may stop SARS-CoV-2 infecting host cells

Researchers at the University of Sheffield have developed a new assay that can be used to assess the attachment of viruses to host cells and to test potential inhibitors of viral infection.

Using the assay, the team was able to demonstrate binding of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein to human cells expressing angiotensin-converting enzyme 2 (ACE2).

The spike protein is the main structure that SARS-CoV-2 uses to bind to ACE2 receptors expressed on target cells, before infecting them and potentially causing coronavirus disease 2019 (COVID-19).

SARS-CoV-2 viruses binding to ACE-2 receptors on a human cell, the initial stage of COVID-19 infection. Illustration credit: Kateryna Kon / Shutterstock
SARS-CoV-2 viruses binding to ACE-2 receptors on a human cell, the initial stage of COVID-19 infection. Illustration credit: Kateryna Kon / Shutterstock

This news article was a review of a preliminary scientific report that had not undergone peer-review at the time of publication. Since its initial publication, the scientific report has now been peer reviewed and accepted for publication in a Scientific Journal. Links to the preliminary and peer-reviewed reports are available in the Sources section at the bottom of this article. View Sources

The researchers also found that incubating the cells with unfractionated heparin, stopped the spike protein binding to them.

A pre-print version of the paper can be accessed in the server bioRxiv*, while the paper undergoes peer review.

Mechanism of SARS-CoV-2 infection

On binding to ACE2, the spike protein undergoes host cell proteolytic cleavage into two subunits: S1, which contains the receptor-binding domain (RBD) and S2, which enables fusion with the host cell membrane and viral entry.

“A cell-surface host serine protease, TMPRSS2 [transmembrane serine proteinase 2], is also thought to be involved in viral entry and is proposed to cleave S1 and S2, leading to activation of the fusion machinery,” write Peter Monk and colleagues.

The new assay used cells that express both ACE2 and TMPRSS2

To investigate SARS-CoV-2 binding to host cells, the team developed a new assay using the RT4 urinary bladder transitional carcinoma cell line, which expresses both ACE2 and TMPRSS2.

They found that an intact recombinant form of the viral spike protein containing both S1 and S2 (S1S2), but not the S1 domain alone, binds strongly to RT4 cells in a temperature-dependent manner.

Binding activity sharply increased at 37°C, suggesting that proteolytic cleavage was likely to be involved, says the team.

Are there any other mechanisms of viral entry?

Monk and colleagues say that most cell types only express quite low levels of ACE2, suggesting that the spike protein might also interact with other receptor sites to gain viral entry.

Certain viruses such as herpes simplex are already known to bind with host glycosaminoglycans called heparan sulfates, says the team.

In addition, a study by one group suggested that the soluble glycosaminoglycan heparin can inhibit the entry of SARS CoV-2 into “Vero” cells – a cell line derived from monkey kidney epithelia.

“These authors also showed that heparin could interact with recombinant S1 RBD and cause conformational changes, leading to the suggestion that SARS-CoV-2 might use host heparan sulfates as an additional attachment site during infection,” write the researchers.

Unfractionated heparin completely stopped the binding

Given that the new assay already seemed to mimic some features of SARS-CoV-2 infection, the researchers used it to test the effects of incubating RT4 cells with heparin at 37°C.

The team reports that unfractionated heparin (UFH) completely inhibited the binding of S1S2 to RT4 cells.

Treating the cells with two low molecular weight heparins (LMWHs) that are already in clinical use also inhibited the binding, but only partially and not as strongly.

“This suggests that heparin, particularly unfractionated forms, could be considered to reduce clinical manifestations of COVID-19 by inhibiting continuing viral infection,” write Monk and team.

Could the spike protein also bind host cell heparan sulfate?

The authors say the interaction they observed between heparin and the spike protein suggests that it might also bind to host cell heparan sulfate.

To test this hypothesis, they treated RT4 cells with a blend of heparinase I and III, enzymes that degrade heparan sulfate molecules, before testing the binding of S1S2.

The treatment did not result in any significant reduction in the binding of RT4 cells, suggesting that heparan sulfates do not play any significant role in the attachment of SARS-CoV-2 spike protein to host cells:

“Although our data supports the inhibitory activity of UFH, it does not support the conjecture that heparan sulfates are essential for viral infection,” writes the team.

What are the implications of the study?

The researchers say that LMWHs, which have already been used to treat COVID-19 patients and been shown to improve outcomes, are much smaller than UFH and have pharmacokinetics that is easier to predict.

Monk and colleagues think their work suggests that earlier use of heparin should be considered when a viral infection is still an important factor in influencing the severity of disease.

“The use of UFH rather than LMWH should also be considered, although we note that administration and the safety profile of UFH might preclude this in some cases,” they add.

Finally, the researchers say their newly developed flow cytometric assay for assessing the binding of SARS-CoV-2 spike protein to host cells lends support to a previous finding that heparin can inhibit viral attachment to monkey kidney epithelial cells.

“Our new assay could be a useful first screen for novel inhibitors of coronavirus infection,” concludes the team.

This news article was a review of a preliminary scientific report that had not undergone peer-review at the time of publication. Since its initial publication, the scientific report has now been peer reviewed and accepted for publication in a Scientific Journal. Links to the preliminary and peer-reviewed reports are available in the Sources section at the bottom of this article. View Sources

Journal references:
  • Preliminary scientific report. Monk P, et al. Unfractionated heparin potently inhibits the binding of SARS-CoV-2 spike protein to a human cell line. bioRxiv 2020. doi: https://doi.org/10.1101/2020.05.21.107870
  • Peer reviewed and published scientific report. Partridge, Lynda J., Lucy Urwin, Martin J. H. Nicklin, David C. James, Luke R. Green, and Peter N. Monk. 2021. “ACE2-Independent Interaction of SARS-CoV-2 Spike Protein with Human Epithelial Cells Is Inhibited by Unfractionated Heparin.”Cells;10 (6): 1419. https://doi.org/10.3390/cells10061419https://www.mdpi.com/2073-4409/10/6/1419.

Article Revisions

  • Mar 22 2023 - The preprint preliminary research paper that this article was based upon was accepted for publication in a peer-reviewed Scientific Journal. This article was edited accordingly to include a link to the final peer-reviewed paper, now shown in the sources section.
Sally Robertson

Written by

Sally Robertson

Sally first developed an interest in medical communications when she took on the role of Journal Development Editor for BioMed Central (BMC), after having graduated with a degree in biomedical science from Greenwich University.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Robertson, Sally. (2023, March 22). Heparin may stop SARS-CoV-2 infecting host cells. News-Medical. Retrieved on November 15, 2024 from https://www.news-medical.net/news/20200524/Heparin-may-stop-SARS-CoV-2-infecting-host-cells.aspx.

  • MLA

    Robertson, Sally. "Heparin may stop SARS-CoV-2 infecting host cells". News-Medical. 15 November 2024. <https://www.news-medical.net/news/20200524/Heparin-may-stop-SARS-CoV-2-infecting-host-cells.aspx>.

  • Chicago

    Robertson, Sally. "Heparin may stop SARS-CoV-2 infecting host cells". News-Medical. https://www.news-medical.net/news/20200524/Heparin-may-stop-SARS-CoV-2-infecting-host-cells.aspx. (accessed November 15, 2024).

  • Harvard

    Robertson, Sally. 2023. Heparin may stop SARS-CoV-2 infecting host cells. News-Medical, viewed 15 November 2024, https://www.news-medical.net/news/20200524/Heparin-may-stop-SARS-CoV-2-infecting-host-cells.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study reveals population-wide immune setpoint for SARS-CoV-2 antibodies