Environmental conditions affect the stability of SARS-CoV-2, study finds

A new study led by Marshall University researcher M. Jeremiah Matson found that environmental conditions affect the stability of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in human nasal mucus and sputum.

Matson, the lead author on a study published earlier this month as an early release in Emerging Infectious Diseases, the journal of the Centers for Disease Control and Prevention (CDC), is a student in the combined Doctor of Medicine and Doctor of Philosophy in Biomedical Research program at the Marshall University Joan C. Edwards School of Medicine.

SARS-CoV-2, the virus that causes the disease known as COVID-19, was found to be less stable at higher humidity and warmer temperatures. In the study, SARS-CoV-2 was mixed with human nasal mucus and sputum specimens, which were then exposed to three different sets of temperature and humidity for up to seven days. Samples were collected throughout the study and analyzed for the presence of infectious virus as well as viral RNA alone, which is not infectious. Viral RNA was consistently detectable throughout the seven-day study, while infectious virus was detectable for up to approximately 12-48 hours, depending on the environmental conditions.

The COVID-19 pandemic has been a sobering reminder that infectious diseases continue to be a major public health threat and require sustained research commitment," Matson said. "While this is a small study that only addresses the potential for fomite [an object that may be contaminated with infectious agents] transmission, which is thought to be less important than droplet transmission for SARS-CoV-2, it nevertheless is informative for public health risk assessment."

M. Jeremiah Matson, Researcher, Marshall University

In a second study, also released this month in Emerging Infectious Diseases, Matson was part of a team of researchers that evaluated the effectiveness of N95 respirator decontamination and reuse against SARS-CoV-2. Vaporized hydrogen peroxide and ultraviolet light were found to be most effective if proper fit and seal were maintained.

Matson was granted a National Institutes of Health (NIH) Fellows Award for Research Excellence (FARE) 2021 for "scientific merit, originality, experimental design and overall quality and presentation" based on an abstract of the stability work. He is currently performing his dissertation research on Ebola virus at the National Institute of Allergy and Infectious Diseases (NIAID) Virus Ecology Section at Rocky Mountain Laboratories in Montana under the mentorship of Section Chief Vincent Munster, Ph.D.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Oropouche virus spreads in South America as scientists warn of potential outbreaks in the U.S.