Researchers solve a long-held mystery of X chromosome inactivation

Researchers at Massachusetts General Hospital (MGH) have solved a mystery that has long puzzled scientists: How do the bodies of female humans and all other mammals decide which of the two X chromosomes it carries in each cell should be active and which one should be silent?

In a breakthrough study published in Nature Cell Biology, the MGH team discovered the role of a critical enzyme in the phenomenon known as X chromosome inactivation (XCI), which is essential for normal female development and also sets the stage for genetic disorders known as X-linked diseases (such as Rett Syndrome) to occur.

Scientists have known for over a half-century that female mammals undergo XCI during embryo formation. Females have two copies of the X chromosome, and each carries many genes.

Having genes expressed on both X chromosomes would be toxic to the cell, as would having both X chromosomes inactivated. To avoid these fates, females evolved with a mechanism that inactivates, or silences, one of the chromosomes.

Over the years, investigators have made strides in understanding how XCI occurs. In 2006, a team led by Jeannie Lee, MD, PhD, of the Department of Molecular Biology at MGH reported that during embryo development the two X chromosomes briefly come together, or pair.

She and her colleagues have since uncovered conclusive evidence that pairing is necessary for the body to decide which X chromosome to inactivate. "But until now, no one knew what one X chromosome was saying to the other to make the decision," says Lee, who is senior author of the Nature Cell Biology paper.

To find out, Lee and her colleagues had to develop sophisticated molecular tools that allow them to study key proteins involved in XCI, which were previously difficult to measure. It was already known that, prior to pairing, both X chromosomes are identical, or "symmetrical," meaning that they express the same genes.

Importantly, both express a form of noncoding RNA called Xist, which plays a vital role in inactivating the X chromosome. However, both X chromosomes also express another form of RNA, Tsix, which blocks Xist and prevents XCI.

In the Nature Cell Biology paper, Lee and her team show that an enzyme called DCP1A randomly chooses one X chromosome to bind to, and in doing so it cuts off, or "decaps," Tsix's protective cover, making the RNA unstable. However, because DCP1A exists in tiny quantities, there is only enough to bind to one X chromosome. "DCP1A flips the switch that starts the entire cascade of X chromosome inactivation," says Lee.

As a result, a protein called CTCF--the "glue" that holds X chromosomes together during pairing--binds to the unstable Tsix RNA and causes it to shut down permanently. Xist is then able to complete the silencing of that X chromosome.

DCP1A allows the two X chromosomes to have a fateful 'conversation', noting that there are many other instances where the body must choose which copy of a gene to express in order to maintain a healthy state. "This discovery, will help scientists understand how other molecular conversations take place in the cell."

Jeannie Lee, MD, PhD, Professor and Director, Department of Molecular Biology, Massachusetts General Hospital

Jeannie Lee, MD, Ph.D., of the Department of Molecular Biology at MGH, is also director of the Lee Laboratory and a professor of Genetics at Harvard Medical School.

Source:
Journal reference:

Aeby, E., et al. (2020) Decapping enzyme 1A breaks X-chromosome symmetry by controlling Tsix elongation and RNA turnover. Nature Cell Biology. doi.org/10.1038/s41556-020-0558-0.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Mapping human biology: Human Cell Atlas leads a new era in precision medicine