Researchers investigate persistence of reproductive cells despite damage from jumping genes

Believe it or not, your genes are 50% parasite, and opportunistic at that. They tend to jump onto sperm and egg cells to replicate in the next generation, a process that can devastate an egg or sperm cell.

A University of Houston evolutionary geneticist, armed with a new $1.8 Million grant, is now trying to determine how reproductive cells can persist despite this damage from parasites.

Within your genome, or entire set of genes, 50% is composed of transposable elements. For the non-scientific that means you are 50% parasite. Odder still, the parasites tend to jump onto sperm and egg cells in their driving need to replicate to the next generation, thus earning the nickname "jumping genes."

For some egg or sperm cells (gametes), that invasion is devastating, causing strands of DNA to either break or shatter, causing an inability to produce healthy reproductive cells.

For other, more genetically tolerant gametes, the jumping gene may not break them, but may cause the offspring to be born with genetic disorders.

We're trying to determine how a developing gamete might be able to persist despite this damage from the jumping genes."

Erin Kelleher, Evolutionary Geneticist and Associate Professor, Department of Biology and Biochemistry, University of Houston

Kelleher was awarded $1.8 million from the National Institute of General Medical Sciences to conduct her research. Kelleher previously published findings on how a gene called the bruno gene, which regulates development of the egg, influences tolerance in the fruit fly genetic model Drosophila melanogaster.

Surviving in the face of invasion is also what tumors do, as jumping genes cause chaos and mutations in them.

"Transposable element activity is implicated in the onset and progression of many tumor types and age-related neurodegenerative diseases," said Kelleher. "Understanding how specific genetic variants of bruno provide tolerance to developing fruit fly eggs may point to similar mechanisms in tumor cells."

Because jumping genes impact egg production, tolerance may be an adaptive trait that allows some individuals to reproduce more than others.

By studying fruit flies collected in the past and comparing them to contemporary fruit flies, Kelleher is asking whether tolerant individuals have become more common through natural selection.

Kelleher will combine genetic analysis of mutant gene formations, or alleles, with bruno variants isolated from Drosphila populations, to reveal the underlying mechanism and recent evolutionary history of bruno-dependent tolerance.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Neanderthal legacy: The surprising genetics behind human tooth size