Researchers develop 3D functional heart organoids from mouse embryonic stem cells

Heart development as it happens in vivo, or in a living organism, is a complex process that has traditionally been difficult to mimic in vitro, or in the laboratory. In a new study, researchers from Tokyo Medical and Dental University (TMDU) developed three-dimensional functional heart organoids from mouse embryonic stem cells that closely resemble the developing heart.

The heart consists of multiple layers of tissue including many different cell types, including working heart muscle, connective tissue cells, and cells that make up blood vessels. These cells work together to ensure a proper functioning of the heart and thus the constant supply of fresh, oxygenated blood to the rest of the body.

Studying all forms of heart disease in the laboratory and developing novel drugs to treat these diseases require disease models that closely resemble the actual heart. While effort has been made to generate heart muscle cells in vitro, these cells present as clumps without the tissue organization seen in vivo.

Despite its seemingly simple function, the heart is a complex organ with an even more complex structure. To achieve that level of structural complexity, during development the heart is exposed to a myriad of signals. We wanted to capitalize on our knowledge of the signaling molecules during heart development and generate heart organoids that resemble the developing heart more closely than current techniques."

Professors Jiyoung Lee and Fumitoshi Ishino, corresponding authors of the study

To achieve their goal, the researchers looked into the factors involved in heart development in vivo and speculated that the protein fibroblast growth factor 4 (FGF4) and a complex consisting of the proteins laminin and entactin (LN/ET complex), all of which are known are expressed in the embryonic heart, are necessary and sufficient to enable structural similarity between the heart organoids and the actual embryonic heart. Indeed, mouse embryonic stem cells exposed to FGF4 and LN/ET showed considerable similarity to the developing heart based on structural as well as molecular analyses.

Intriguingly, the process of development in the heart organoids closely reflected the morphological changes during embryonic heart development in vivo. A closer look at the cellular components making up the heart organoids revealed that cells of the embryonic heart, including cells of all four chambers as well as of the conduction system, were present in the structural organization seen during embryonic development. Importantly, the heart organoids possessed functional properties close to their in vivo-counterpart.

"These are striking results that show how our method provides a biomimetic model of the developing heart using a rather simple protocol. This tool could be helpful in studying the molecular processes during heart development, and in developing and testing novel drugs against heart disease," say Professors Lee and Ishino.

Source:
Journal reference:

Lee, J., et al. (2020) In vitro generation of functional murine heart organoids via FGF4 and extracellular matrix. Nature Communications. doi.org/10.1038/s41467-020-18031-5.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study suggests a key to kick-start the heart's own repair mechanism