Circadian gene mutation increases drug-taking behaviors in mice

A mutation in the gene regulating circadian rhythms increases self-administration of cocaine in mice, University of Pittsburgh Schools of the Health Sciences researchers found in a paper published today in the Journal of Neuroscience. The study reveals a molecular basis for the deep and fundamental connection between the disruption in circadian rhythms and predisposition to substance abuse.

The scientists trained mice carrying a mutation in the NPAS2 gene-;one of the key genes that controls sleep and wake cycles-;to self-administer a dose of cocaine. To examine the role of NPAS2 in drug-taking, researchers then recorded changes in the mice's behavior related to developing a psychostimulant disorder.

Mice with NPAS2 mutation showed increased self-administration of cocaine. Female mice generally had a greater response than males, and it further increased at night-;an active phase of the mouse's daily activity cycle.

We were surprised to see just how much the NPAS2 mutation affected drug-taking behaviors. It emphasizes that any kind of disruption in circadian rhythms, either environmental or genetic, can cause profound changes to the brain that predispose individuals to substance abuse."

Lauren DePoy, Ph.D., lead author, postdoctoral fellow at the Center for Neuroscience at Pitt

Circadian disruptions, or disturbances in the internal biological clock in cells and tissues of the body, are closely linked to substance use disorders. Previous studies have shown that chronic drug abuse alters circadian rhythms and that disrupted circadian genes can alter drug sensitivity, both feeding into the vicious cycle of substance use vulnerability.

To approximate the way a psychostimulant addiction develops in humans, researchers chose to use a model of cocaine self-administration in mice. Animals were implanted with a jugular intravenous catheter which supplied a fixed dose of cocaine into the bloodstream whenever a mouse would push on a lever inside the experimental chamber.

A push of the lever was timed with noise and light cues, which allowed researchers to study if presentation of cues alone was enough to trigger drug-seeking behavior, and how long it took for the animal to change their behavior if cues and drug weren't present.

In addition to finding sex-based differences in behavioral changes related to cocaine administration, the researchers found that striatum-;a critical component of the reward system of the brain-;was preferentially activated in NPAS2-mutant females.

Scientists say that even though humans do not harbor the same mutation in the NPAS2 gene, other genetic variances in circadian genes are linked to differences in sleep-wake patterns and predisposition to psychiatric disorders, such as depression or seasonal affective disorder.

"Circadian genes are expressed in regions of the brain that control reward, motivation and mood," said senior author Colleen McClung, Ph.D., professor of psychiatry and clinical and translational science at Pitt. "Defining the mechanisms of how those genes control activity and function of the brain can help us develop interventions that can bring disturbed rhythms back to normal and fix downstream consequences of psychostimulant disorders."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Researchers uncover key genes linked to DCIS progression