Scientists make four major discoveries about SARS-CoV-2

University of Minnesota Medical School researchers studied SARS-CoV-2 infections at individual cellular levels and made four major discoveries about the virus, including one that validates the effectiveness of remdesivir - an FDA-approved antiviral drug - as a form of treatment for severe COVID-19 disease.

Since the start of the COVID-19 pandemic, the way that each individual responds differently to the infection has been closely studied. In our new study, we examined variations in the way individual cells reacted differently to the coronavirus and responded to antiviral treatment."

Ryan Langlois, Ph.D., Study Senior Author, Associate Professor, Department of Microbiology and Immunology and Member, Center for Immunology, U of M Medical School

The study, published in the journal PLOS Pathogens, found that:

  • SARS-CoV-2 primarily infects two types of cells in the upper respiratory tract - ciliated cells and goblet cells;
  • Goblet cells are the main producer of pro-inflammatory responses, which are common in severe COVID-19 cases;
  • Remdesivir, however, is effective in blocking virus replication in all cell types in the upper respiratory tract;
  • SARS-CoV-2 is highly effective at evading initial detection by the innate immune system, but when detected, virus replication is efficiently blunted by antiviral responses.

"Understanding early events in virus-host interactions is critical for understanding the pathophysiology of the disease as well as for identifying appropriate antiviral and immunomodulatory drugs," Langlois said. "Our results show that ciliated airway epithelial cells are the predominant cell type initially infected by SARS-CoV-2, and importantly, that remdesivir is capable of reducing viral replication in all infected cell types within this culture system."

The diverse population of cells lining the human airway, called "airway epithelium," is the very first line of defense against COVID-19 and can set the stage for immune responses that either protect against disease or cause damage. Using a cutting-edge technique that comprehensively measures reactions by single cells, Langlois' team discovered that SARS-CoV-2 is capable of infecting most cell types in the human airway and identified a key gene required for viral entry.

"As expected, we observed a large amount of variation between different cells in the antiviral immune response, paving the way for future studies that will better characterize why some individuals are relatively protected against severe COVID-19 disease," Langlois said.

Source:
Journal reference:

Fiege, J.K., et al. (2021) Single cell resolution of SARS-CoV-2 tropism, antiviral responses, and susceptibility to therapies in primary human airway epithelium. PLOS Pathogens. doi.org/10.1371/journal.ppat.1009292.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
SARS-CoV-2 hijacks cholesterol trafficking to fuel infection and evade immune responses