L452R mutation potentially favors adaptive evolution of SARS-CoV-2

A team of scientists from the United States recently investigated the mutational signatures in the receptor-binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein. The findings reveal that the frequency of L452R mutation in the spike region has increased since November 2020. The L452R mutation, which is predicted to increase viral infectivity and host immune evasion potency, has been found to associate with a viral variant that has recently caused massive outbreaks in California. The study is currently available on the bioRxiv* preprint server.

This news article was a review of a preliminary scientific report that had not undergone peer-review at the time of publication. Since its initial publication, the scientific report has now been peer reviewed and accepted for publication in a Scientific Journal. Links to the preliminary and peer-reviewed reports are available in the Sources section at the bottom of this article. View Sources

Background

SARS-CoV-2, the causative pathogen of coronavirus disease 2019 (COVID-19), is an enveloped RNA virus of the Coronaviridae family. Apart from the original Wuhan strain that emerged in December 2019, many distinct variants of SARS-CoV-2 containing several spike mutations are continuously appearing throughout the course of the pandemic. The majority of these variants contain mutations in the RBD of the spike protein, and thus, are considered as “variants of concern” because of their ability to increase viral infectivity, virulence, and immune evasion potency.

Of two domains (S1 and S2) of SARS-CoV-2 spike glycoprotein, S1 interacts with the host cell angiotensin-converting enzyme 2 (ACE2) receptor via the RBD. This is followed by proteolytic dissociation of S1 and S2 domains and subsequent fusion of the viral envelope with the host cell membrane. Because the RBD is significantly involved in viral recognition and entry, any structural changes in this region due to mutation can influence viral transmissibility and virulence. Moreover, antibodies developed against the RBD have been found to have maximum potency in neutralizing SARS-CoV-2.

In the current study, the scientists have analyzed the genetic alterations in the 414-583 amino acid region of the spike S1 domain, which partially covers the RBD. Using polymerase chain reaction (PCR) and Sanger sequencing methods, they have analyzed a total of 570 nasopharyngeal specimens collected from COVID-19 patients between April 2020 and February 2021, from different regions of the United States.

Distribution of silent (green triangles) and amino acid (red triangles) mutations across region 414-583 of the Spike protein. Dark red – receptor-binding domain (RBD); Green – C-terminal domain 1 (CTD1) of S1 Spike region; Blue – receptorbinding ridge epitope residues; Yellow – 443-450 loop epitope residues; Black – 570-572 loop residues.
Distribution of silent (green triangles) and amino acid (red triangles) mutations across region 414-583 of the Spike protein. Dark red – receptor-binding domain (RBD); Green – C-terminal domain 1 (CTD1) of S1 Spike region; Blue – receptor-binding ridge epitope residues; Yellow – 443-450 loop epitope residues; Black – 570-572 loop residues.

Important observations

The scientists identified L452R amino acid substitution in the spike region as the dominant mutation in specimens collected since November 2020. Specifically, they observed that two independent SARS-CoV-2 variants (CAL.20C and CAL.20A) containing spike L452R mutation emerged recently in the state of California. Of these variants, CAL.20C (clade 20C; lineage B.1.429) is considered to be the predominant variant in California since November 2020. However, the CAL.20A variant (clade 20A; lineage B.1.232) identified in this study has emerged much more recently than CAL.20C and is primarily circulating in California. Based on the phylogenetic analysis, the scientists indicated that L452R mutation is the primary driving force behind the emergence of both variants. Such an increase in L452R mutation frequency in recent SARS-CoV-2 variants directly indicates its crucial involvement in viral adaptive evolution due to positive selection.

In contrast to CAL.20C, no massive clonal expansion was observed for CAL.20A. According to the study findings, CAL.20C contains two additional spike mutations along with L452R, which are missing in CAL.20A. The scientists believe that these additional mutations may be responsible for increasing the adaptive benefits of L452R, and because of this reason, CAL.20A could not achieve the same expansion rate as CAL.20C.

The scientists examined the Nextstrain and GISAID databases and found that apart from two California variants, L452R mutation is present in more than 400 SARS-CoV-2 genomes isolated from over 20 countries. This indicates a strong positive selection for L452R mutation. Interestingly, they found CAL.20A variant from a gorilla at the San Diego Zoo, which contains two additional mutations in the non-structural protein 2 (NSP2).

Based on the available literature, the scientists mentioned that the substitution of hydrophobic leucine residue at position 452 with a polar, highly hydrophilic arginine residue (L452R mutation) might strongly favor the interaction between virus and host cell, which in turn may significantly increase the viral transmissibility and infectivity. Moreover, such amino acid substitution is expected to reduce the virus-neutralizing ability of antibodies specifically targeting the spike RBD.

Study significance

The study demonstrates the importance of L452R mutation in viral adaptive evolution. A strong positive selection for L452R mutation has been particularly observed only recently, indicating that the viral adaptive evolution might have occurred in response to extensive containment measures or increasing population-level immunity against the original viral strains.

This news article was a review of a preliminary scientific report that had not undergone peer-review at the time of publication. Since its initial publication, the scientific report has now been peer reviewed and accepted for publication in a Scientific Journal. Links to the preliminary and peer-reviewed reports are available in the Sources section at the bottom of this article. View Sources

Journal references:

Article Revisions

  • Apr 5 2023 - The preprint preliminary research paper that this article was based upon was accepted for publication in a peer-reviewed Scientific Journal. This article was edited accordingly to include a link to the final peer-reviewed paper, now shown in the sources section.
Dr. Sanchari Sinha Dutta

Written by

Dr. Sanchari Sinha Dutta

Dr. Sanchari Sinha Dutta is a science communicator who believes in spreading the power of science in every corner of the world. She has a Bachelor of Science (B.Sc.) degree and a Master's of Science (M.Sc.) in biology and human physiology. Following her Master's degree, Sanchari went on to study a Ph.D. in human physiology. She has authored more than 10 original research articles, all of which have been published in world renowned international journals.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Dutta, Sanchari Sinha Dutta. (2023, April 05). L452R mutation potentially favors adaptive evolution of SARS-CoV-2. News-Medical. Retrieved on December 21, 2024 from https://www.news-medical.net/news/20210223/L452R-mutation-potentially-favors-adaptive-evolution-of-SARS-CoV-2.aspx.

  • MLA

    Dutta, Sanchari Sinha Dutta. "L452R mutation potentially favors adaptive evolution of SARS-CoV-2". News-Medical. 21 December 2024. <https://www.news-medical.net/news/20210223/L452R-mutation-potentially-favors-adaptive-evolution-of-SARS-CoV-2.aspx>.

  • Chicago

    Dutta, Sanchari Sinha Dutta. "L452R mutation potentially favors adaptive evolution of SARS-CoV-2". News-Medical. https://www.news-medical.net/news/20210223/L452R-mutation-potentially-favors-adaptive-evolution-of-SARS-CoV-2.aspx. (accessed December 21, 2024).

  • Harvard

    Dutta, Sanchari Sinha Dutta. 2023. L452R mutation potentially favors adaptive evolution of SARS-CoV-2. News-Medical, viewed 21 December 2024, https://www.news-medical.net/news/20210223/L452R-mutation-potentially-favors-adaptive-evolution-of-SARS-CoV-2.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Researchers classify post-COVID subtypes and uncover vaccination’s protective role