Could small synthetic antigen proteins be diagnostic tools for SARS-CoV-2?

Researchers have developed small proteins from sequences in SARS-CoV-2's RBD that bind to ACE2. These were as effective in binding to neutralizing antibodies as larger RBD proteins.

Study: Synthetic protein antigens for COVID-19 diagnostics. Image Credit: Juan Gaertner / Shutterstock
Study: Synthetic protein antigens for COVID-19 diagnostics. Image Credit: Juan Gaertner / Shutterstock

This news article was a review of a preliminary scientific report that had not undergone peer-review at the time of publication. Since its initial publication, the scientific report has now been peer reviewed and accepted for publication in a Scientific Journal. Links to the preliminary and peer-reviewed reports are available in the Sources section at the bottom of this article. View Sources

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is closely related to SARS-CoV. While the fatality rate of the SARS-CoV-2 is lower, its transmissibility is much higher. This is likely due to the presence of a furin cleavage site around position 701 on the viral spike protein.

SARS-CoV-2 has been mutating since it first appeared, with changes in the furin cleavage site and the receptor-binding domain (RBD). Hence, it is important to have sensitive and specific diagnostic tools to detect these variants.

Techniques to detect prior SARS-CoV-2 infection generally detect antibodies to the spike protein in blood sera. The methods used to express the SARS spike protein have been adapted for SARS-CoV-2. But, it is possible that future variants of the spike protein will not be easily made using recombinant techniques.

So, researchers have tried reducing the size of the protein needed to identify COVID-19 by using the area of maximum variation in sequence between SARS-CoV and SARS-CoV-2. This region is also a target of many SARS-CoV-2 neutralizing antibodies.

Small proteins for identifying SARS-CoV-2

In a study published on the medRxiv* preprint server, researchers report small synthetic proteins similar to this region of the virus that bind antibodies from convalescent sera.

The authors synthesized two proteins about 7 and 10 kD in size, JS7 and JS10, respectively, similar to a portion of the RBD that complexes with the angiotensin-converting enzyme 2 (ACE2). They tested sera obtained from nine COVID-19 patients, who had disease severity varying from mild to fatal.

The team found the antibodies in all the nine sera recognized the 7 kD protein in a dotspot assay, whereas recognition of SARS-CoV-2 recombinant RBD varied. ELISA assays showed similar binding for both. Antibodies from all the patients recognized SARS-CoV-2 RBD protein, but antibodies obtained from one patient with mild disease did not recognize the SARS-CoV full-length spike protein.

ELISA assays showed antibody binding was proportional to the infection severity. When the team added some peptides from the RBD/ACE2 complex, the binding reduced for some sera. For the 7 kD protein synthesized, adding only one peptide from this region reduced binding almost completely. Thus, using a smaller protein to detect previous SARS-CoV-2 infection was as effective as using a larger RBD protein.

Smaller proteins are more advantageous

One of the issues with larger recombinant proteins is the need for protein tags, for solubility, easy purification, and the like. The team found that when tested with COVID-19 negative sera and patient sera, both bound to the protein, producing artifacts in the results. Two control sera also bound to three recombinant proteins to the same level as patients with mild COVID-19. This may be because of the previous infection with other coronaviruses or germline antibody recognition.

One of the big advantages of the synthesized 7 kD protein is that it can be modified quickly to account for the emerging new variants of SARS-CoV-2. Mutations in the ACE2 binding regions of the RBD may reduce the effectiveness of treatments like convalescent plasma and monoclonal antibodies.

There is evidence that any variation in the protein sequence of the JS7 region of SARS viruses limits neutralization by antibodies. Just a single change in an amino acid between SARS-CoV and SARS-CoV-2 in an area close to the JS7 region greatly reduced the affinity of the cross-reactive SARS-CoV antibody CR3022.

Although all the patient sera antibodies recognized the SARS-CoV-2 RBD, antibodies from one patient who only had mild disease did not recognize the entire spike protein of SARS-CoV, even though 80% of the sequence is identical. Some mutations in this region, which were likely to escape mutants of monoclonal antibodies, were insensitive to neutralization by convalescent sera, suggesting variations arising in different parts of the world may be selected because of immune pressure.

Thus, it is necessary to have a wide variety of antigens representing regions of variation in the RBD to enable quick identification of different variants. Modifications can be made to the JS7 protein to add any reagents or linkers for assay, and it may also be used to develop vaccines.

This news article was a review of a preliminary scientific report that had not undergone peer-review at the time of publication. Since its initial publication, the scientific report has now been peer reviewed and accepted for publication in a Scientific Journal. Links to the preliminary and peer-reviewed reports are available in the Sources section at the bottom of this article. View Sources

Journal references:

Article Revisions

  • Apr 5 2023 - The preprint preliminary research paper that this article was based upon was accepted for publication in a peer-reviewed Scientific Journal. This article was edited accordingly to include a link to the final peer-reviewed paper, now shown in the sources section.
Lakshmi Supriya

Written by

Lakshmi Supriya

Lakshmi Supriya got her BSc in Industrial Chemistry from IIT Kharagpur (India) and a Ph.D. in Polymer Science and Engineering from Virginia Tech (USA).

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Supriya, Lakshmi. (2023, April 05). Could small synthetic antigen proteins be diagnostic tools for SARS-CoV-2?. News-Medical. Retrieved on December 22, 2024 from https://www.news-medical.net/news/20210302/Could-small-synthetic-antigen-proteins-be-diagnostic-tools-for-SARS-CoV-2.aspx.

  • MLA

    Supriya, Lakshmi. "Could small synthetic antigen proteins be diagnostic tools for SARS-CoV-2?". News-Medical. 22 December 2024. <https://www.news-medical.net/news/20210302/Could-small-synthetic-antigen-proteins-be-diagnostic-tools-for-SARS-CoV-2.aspx>.

  • Chicago

    Supriya, Lakshmi. "Could small synthetic antigen proteins be diagnostic tools for SARS-CoV-2?". News-Medical. https://www.news-medical.net/news/20210302/Could-small-synthetic-antigen-proteins-be-diagnostic-tools-for-SARS-CoV-2.aspx. (accessed December 22, 2024).

  • Harvard

    Supriya, Lakshmi. 2023. Could small synthetic antigen proteins be diagnostic tools for SARS-CoV-2?. News-Medical, viewed 22 December 2024, https://www.news-medical.net/news/20210302/Could-small-synthetic-antigen-proteins-be-diagnostic-tools-for-SARS-CoV-2.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
The long-term cardiac impact of COVID-19