Researchers make gametes from xenogenic mouse stem cells

Making gametes such as sperm and eggs from pluripotent stem cells, primitive cells that can make all the tissues, greatly contributes to efficient reproduction of livestock animals and future assisted reproductive medicine. Researchers pave the way to achieve this goal using a body of xenogenic animals.

The researchers previously developed a method to grow stem cells into an entire organ in the body, so-called blastocyst complementation. The blastocyst is a structure of early embryos. If stem cells are transplanted into the blastocyst obtained from animals that cannot make a certain organ, the stem cells compensate the missing organ in the developing body, and make the entire organ. "We expected this method is also applicable to the efficient production of gametes," explains an author who led the study, Dr. Toshihiro Kobayashi.

A year ago, the researchers created a genetically modified rat that completely lacks sperm and eggs. They hypothesized that the rat can be used as an excellent host to grow exogenous stem cells into gametes.

The researchers firstly transplanted allogenic rat stem cells into blastocyst obtained from rats that are unable to make gametes, and confirmed all the gametes were derived from the stem cells. The generated gametes deliver the genetic information from the stem cells to the next generation, which enables efficient production of genetically modified rats.

Then, researchers tested whether xenogenic mouse stem cells can make mouse gametes in the body of rats. Remarkably, mouse germ cells including sperm and spermatids were observed in the testis of the rats, and the spermatids could fertilize with mouse eggs to produce healthy pups (see figures).

Making gametes from stem cells even in the xenogenic environment is quite important for the application of this strategy. In the future, we may be able to use the method to preserve endangered species, since their stem cells are available due to iPS cell technology."

Dr. Masumi Hirabayashi, Study Author

Source:
Journal reference:

Kobayashi, T., et al. (2021) Blastocyst complementation using Prdm14-deficient rats enables efficient germline transmission and generation of functional mouse spermatids in rats. Nature Communications. doi.org/10.1038/s41467-021-21557-x.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Stress-induced changes in sperm motility occur after a stressful event, study shows