A genetic variant of TMPRSS2 may confer protection against severe COVID-19

Among a large sample of coronavirus disease 2019 (COVID-19) patients, researchers found that a genetic variant – caused by an amino acid substitution from valine to methionine – is associated with a reduced chance of severe disease.

Study: A common TMPRSS2 variant protects against severe COVID-19. Image Credit: Billion Photos / Shutterstock
Study: A common TMPRSS2 variant protects against severe COVID-19. Image Credit: Billion Photos / Shutterstock

This news article was a review of a preliminary scientific report that had not undergone peer-review at the time of publication. Since its initial publication, the scientific report has now been peer reviewed and accepted for publication in a Scientific Journal. Links to the preliminary and peer-reviewed reports are available in the Sources section at the bottom of this article. View Sources

Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, can have a diverse range of effects on people. Some people develop no symptoms; some have mild fever, sore throat, among other symptoms; whereas in others, the infection becomes more severe and often fatal.

Apart from age, gender, and other diseases, genetics has also emerged as another determinant of COVID-19 severity. Genetic variants involved in the regulation of interferon immunity are associated with severe COVID-19. Genome-wide association studies (GWAS) have identified several genetic groups associated with severe COVID-19.

The protein, transmembrane protease serine-type 2 (TMPRSS2), plays an important role in the entry of SARS-CoV-2 into host cells. It is expressed in the lungs, colon, stomach, salivary glands, and other tissues. In the lungs, it is expressed along with the angiotensin-converting enzyme 2 (ACE2), a receptor to which SARS-CoV-2 binds.

Studies have shown that inhibiting TMPRSS2 prevents SARS-CoV-2 infection in vitro. SARS-CoV-2 infected mice, when treated with the serine protease inhibitor camostat mesylate, have a high survival rate.

So, a team of researchers hypothesized that naturally-occurring variations in the TMPRSS2 gene could affect the structure of the TMPRSS2 protein and may modulate the severity of SARS-CoV-2 infection.

Analyzing variants in TMPRSS2 gene

The team analyzed 378 TMPRSS2 genetic variants in the GnomAD database for population genetic variants and reported their results in a paper published in the medRxiv* preprint server. They generated a 3D structural model of the protein, identified the different bonds that stabilize its structure and how that is affected by naturally occurring substitutions in the amino acids.

Of the 137 variants predicted to disrupt the structure and/or function of TMPRSS2, 136 are rare in the human population. The remaining variant, rs12329760, causes the substitution of the evolutionarily conserved valine to methionine.

The team analyzed the relation between this variant of the TMPRSS2 gene and severe COVID-19 using 2,244 critically ill patients and compared them to 11,220 ancestry-matched individuals who tested negative for SARS-CoV-2.

They found that the minor T allele of rs12329760 had a strong positive association with a protective effect against COVID-19 in people of European ancestry, and in those of East Asian ancestry to a lesser extent. A similar effect was observed in South Asian and African individuals, but the result was not statistically significant, likely because of small sample sizes. The protective effect was confirmed by a larger GWAS meta-analysis.

Although the results confirm the protective effect of the variant, more studies on asymptomatic or patients with mild symptoms are needed to understand its effect against mild viral infections.

The frequency of occurrence rs12329760 is different among the population, with the higher frequency seen in East Asian and Finnish people than South Asians or Europeans. The lowest frequency is in Latino and Jewish-Ashkenazi populations. Further studies on populations outside of Europe are needed to understand its effect on the severity of SARS-CoV-2 infection on different groups.

Variant in TMPRSS2 may have protective effect

The authors write:

Although the differences in the proportion of SARS-CoV-2 patients who develop severe COVID-19 across different populations are more likely to be explained by social behavior, public health measures to curb outbreaks, exposure to other viruses and immunological factors, human genetic variation across different populations may also marginally contribute to the observed differences.”

The authors also tested the effect of the TMPRSS2 V160M on its structure and function in 293T cells expressing ACE2. The wild-type TMPRSS2 exists half in the full length and half in the fully cleaved protein structure. But, the V160M variant had a higher proportion of the full-length protein compared to the fully cleaved version, indicating the variant may somewhat inhibit autocleavage of the protein.

Thus, the results indicate that the V160M variation leads to a less catalytically active TMPRSS2, which is less able to cleave and help the SARS-CoV-2 spike protein with infection. Thus, TMPRSS2 may have additional functions besides its role in the activation of the spike protein. Similar to other soluble serine proteases, the soluble TMPRSS2 could play a role in promoting inflammation in different tissues.

This news article was a review of a preliminary scientific report that had not undergone peer-review at the time of publication. Since its initial publication, the scientific report has now been peer reviewed and accepted for publication in a Scientific Journal. Links to the preliminary and peer-reviewed reports are available in the Sources section at the bottom of this article. View Sources

Journal references:

Article Revisions

  • May 18 2023 - The preprint preliminary research paper that this article was based upon was accepted for publication in a peer-reviewed Scientific Journal. This article was edited accordingly to include a link to the final peer-reviewed paper, now shown in the sources section.
Lakshmi Supriya

Written by

Lakshmi Supriya

Lakshmi Supriya got her BSc in Industrial Chemistry from IIT Kharagpur (India) and a Ph.D. in Polymer Science and Engineering from Virginia Tech (USA).

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Supriya, Lakshmi. (2023, May 18). A genetic variant of TMPRSS2 may confer protection against severe COVID-19. News-Medical. Retrieved on November 22, 2024 from https://www.news-medical.net/news/20210309/A-genetic-variant-of-TMPRSS2-may-confer-protection-against-severe-COVID-19.aspx.

  • MLA

    Supriya, Lakshmi. "A genetic variant of TMPRSS2 may confer protection against severe COVID-19". News-Medical. 22 November 2024. <https://www.news-medical.net/news/20210309/A-genetic-variant-of-TMPRSS2-may-confer-protection-against-severe-COVID-19.aspx>.

  • Chicago

    Supriya, Lakshmi. "A genetic variant of TMPRSS2 may confer protection against severe COVID-19". News-Medical. https://www.news-medical.net/news/20210309/A-genetic-variant-of-TMPRSS2-may-confer-protection-against-severe-COVID-19.aspx. (accessed November 22, 2024).

  • Harvard

    Supriya, Lakshmi. 2023. A genetic variant of TMPRSS2 may confer protection against severe COVID-19. News-Medical, viewed 22 November 2024, https://www.news-medical.net/news/20210309/A-genetic-variant-of-TMPRSS2-may-confer-protection-against-severe-COVID-19.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Link between COVID-19 and long-term risk of autoimmune and autoinflammatory connective tissue disorders