New compound may provide a basis for drug development against COVID-19

SARS-CoV-2, the virus responsible for the COVID-19 pandemic, arrived one year ago and turned our lives upside-down.

While worldwide vaccination programs are currently ongoing, we do not yet know for how long the vaccine will provide immune protection against infection, and if the currently approved vaccines can provide protection against the emerging virus variants.

In addition, it appears that vaccines cannot prevent illness for people who have already been infected. In contrast to vaccines, there are currently no effective drugs that act against the virus SARS-CoV-2.

New research by Associate Professor Jasmin Mecinovic and co-workers from the Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, now presents a compound that might provide a basis for the development of drugs against COVID-19.

The work has been recently published in Chemical Communications.

Our approach is based on mimicking Nature, and the idea is to prevent the virus from entering the body's cells. If the virus does not enter the cells, it cannot survive. Instead, the immune system destroys the viral particles, thus preventing an infection."

Jasmin Mecinovic, Associate Professor, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark

SARS-CoV-2 belongs to the family of coronaviruses, which are named after their characteristic crown shaped envelope that shields its RNA from being damaged. This crown is made up out of viral spike proteins, which act as the lock-picks used by the virus to break into a host cell.

The SARS-CoV-2 spike protein specifically interacts with an enzyme, called ACE2 receptor, to initiate cell entry and infection.

The ACE2 receptor is found on the surface of cells in many different tissues and is especially common in the lungs. For this reason, SARS-CoV-2 infection leads to (severe) respiratory disease symptoms for many people.

Mecinovic and colleagues have found that peptides (a small part of protein), made to look exactly like the ACE2 receptor can act as a decoy and prevent binding of the of the SARS-CoV-2 spike protein.

- This suggests that molecular decoys based on the ACE2 receptor might be an effective therapeutic to prevent infection by the virus, says PhD student Marijn Maas, the first author of the article.

- Getting a new drug to the market is a long journey. Next step is to continue studying our synthetic peptide - for example by making variations of it to see if we can improve its potency, says Jasmin Mecinovic.

Source:
Journal reference:

Maas, M.N., et al. (2021) Targeting SARS-CoV-2 spike protein by stapled hACE2 peptides. Chemical Communications. doi.org/10.1039/D0CC08387A.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Link between COVID-19 and long-term risk of autoimmune and autoinflammatory connective tissue disorders