UTEP researchers use real-time 3D animation to study motor impairments in children with autism

For more than a year, researchers at The University of Texas at El Paso's Stanley E. Fulton Gait Research & Movement Analysis Lab in the College of Health Sciences have been using real-time 3D animation to investigate motor impairments in children who have autism spectrum disorder (ASD). Their aim is to understand how children with autism can learn motor skills, so that they can receive effective therapies.

The results of their study, titled "Children With Autism Exhibit More Individualized Responses to Live Animation Biofeedback Than Do Typically Developing Children," were recently published in the journal of Perceptual and Motor Skills. The paper's release coincides with National Autism Awareness Month in April.

The greatest takeaway from this study is that when teaching or coaching new movements to an individual with autism, the teacher or coach needs to understand the individual with autism's specific motor learning characteristics. They need to look specifically at each child's needs because each child is different."

Jeffrey Eggleston, Ph.D., study's lead author, assistant professor of kinesiology and Gait lab director

The study's other authors include Alyssa N. Olivas, a student in the doctoral biomedical engineering program; Heather R. Vanderhoof and Emily A. Chavez, students in the Interdisciplinary Health Sciences (IHS) doctoral program; Carla Alvarado, M.D., board certified psychiatrist; and Jason B. Boyle, Ph.D., associate professor and interim chair of Kinesiology at UTEP.

More than 80% of children with ASD have gross motor skills issues, such as problems with balance and coordination, which can interfere with their communication and social interactions.

The 18-month UTEP study incorporated live animation biofeedback to teach 15 children who have ASD and were between the ages of 8 and 17 how to do a squat, a strength exercise that works multiple muscle groups in the body's lower extremities.

Researchers compared their movement patterns to children without the disorder. They found that children with ASD displayed highly individualized responses to the live animation biofeedback, much more so than children with typical development, Eggleston said.

In the lab, children had 1-inch cubes called inertial measurement unit (IMU) sensors strapped to their pelvis, thighs, lower legs and feet. They followed an animation model on a computer screen, which showed them how to squat. The children would then try to perform the squat without looking at the animation.

IMU sensors captured the movement of the child's lower extremities. The data was relayed to a computer graphics program via Bluetooth, which was transposed into a skeletal animation of the child squatting and then standing back up on the computer screen.

The study, which took place before the COVID-19 pandemic, was funded through a nearly $15,000 grant from the J. Edward and Helen M. C. Stern Foundation and UTEP's kinesiology department.

Source:
Journal reference:

Eggleston, J.D., et al. (2021) Children With Autism Exhibit More Individualized Responses to Live Animation Biofeedback Than Do Typically Developing Children. Perceptual and Motor Skills. doi.org/10.1177/0031512521998280.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Antiseizure medications during pregnancy linked to neurodevelopmental risks in children