Intranasal COVID-19 therapeutic shows promise in preclinical trials

The coronavirus disease 2019 (COVID-19) pandemic continues to rage in many countries over a year after it first emerged in Wuhan, China. New and more infectious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants are emerging, with concern mounting over their natural and vaccine-induced immunity evasion potential.

Rapid development and deployment of non-invasive therapeutic measures to prevent infection by all SARS-CoV-2 variants could complement the currently ongoing vaccination efforts. It will also help put an end to this unprecedented COVID-19 pandemic.

Study: An intranasal ASO therapeutic targeting SARS-CoV-2. Image Credit: strannik65 / Shutterstock
Study: An intranasal ASO therapeutic targeting SARS-CoV-2. Image Credit: strannik65 / Shutterstock

Novel intranasal therapeutic option to target SARS-CoV-2 RNA using antisense oligonucleotides

This news article was a review of a preliminary scientific report that had not undergone peer-review at the time of publication. Since its initial publication, the scientific report has now been peer reviewed and accepted for publication in a Scientific Journal. Links to the preliminary and peer-reviewed reports are available in the Sources section at the bottom of this article. View Sources

Researchers from the US and Denmark recently described a novel therapeutic option that targets the SARS-CoV-2 ribonucleic acid (RNA) using locked nucleic acid antisense oligonucleotides (LNA ASOs). They identified an LNA ASO that binds to the 5’ leader sequence of SARS-CoV-2 ORF1a/b. This disrupts a highly conserved stem-loop structure with nanomolar efficacy and inhibits viral replication in host cells. The team’s study has been released as a preprint on the bioRxiv* server.

Antisense therapy is currently used in clinical treatment for a range of different diseases, including cytomegalovirus retinitis (Fomivirsen), Duchenne muscular dystrophy (Eteplirsen), and Spinal Muscular Atrophy (Nusinersen).”

LNA ASOs inhibit SARS-CoV-2 replication and infection in mice and hamsters

The LNA ASO, when administered intranasally every day in the K18-hACE2 humanized COVID-19 mouse model, strongly (98-99%) suppressed viral replication in the lungs of the SARS-CoV-2-infected mice. This reveals potent prophylactic as well as treatment effects of LNA ASOs. The researchers found that the LNA ASO also inhibits viral infection in golden Syrian hamsters and is effective against all SARS-CoV-2 “variants of concern,” including B.1.427, B.1.1.7, and B.1.351, with high efficacy in both in vitro and in vivo studies.

LNA ASOs can override the challenge of viral mutations thanks to their ability to design sequences that are specifically targeted to highly conserved and key regulatory regions of the viral genome. In addition, LNA ASO cocktails that target multiple critical regions of the viral genome may further improve the efficacy of LNA ASOs as therapeutic candidates to overcome viral mutations.

Use of LNA ASOs may be a promising treatment approach to reduce the transmission of vaccine-resistant SARS-CoV-2 variants

The continuous evolution of SARS-CoV-2 and the emergence of new, more dangerous variants with increased morbidity and mortality poses a huge challenge to reaching “herd immunity.” Traditional methods of drug screening and vaccine development are time-consuming and may not be able to match the speed with which drug- or vaccine-resistant SARS-CoV-2 variants are emerging. Hence there is a compelling need for alternative approaches to the rapid development of drugs that effectively act against all variants of concern.

Based on the findings of the study, the authors conclude that LNA ASOs that target SARS-CoV-2 can be a promising therapeutic approach to reduce the transmission of new SARS-CoV-2 variants that are partially resistant to monoclonal antibodies and vaccines. These LNA ASOs could be administered intranasally for prophylaxis or by lung delivery using a nebulizer to decrease symptoms in severe COVID-19 patients.

LNA ASOs are chemically stable compounds that can be stored for use during future pandemics

Given the relatively small size of RNA viral genomes and the ability to rapidly sequence any genome using next-generation sequencing techniques, anti-viral LNA ASOs can be designed and screened in a fast and efficient manner that allows rapid response to all kinds of health crises.

LNA ASOs are chemically stable compounds and can be modified to target various viral RNA sequences. They can be more impactful in remote areas where vaccine distribution is challenging, and they could also be stockpiled for use during other pandemics caused by coronaviruses that may threaten humanity in the future.

In conclusion, we have identified an intranasally delivered LNA ASO targeting the 5’ leader sequence as a viable therapeutic approach for preventing or treating SARS-CoV-2 infections, including those caused by variants of concern, indicating that LNA ASOs can be pursued as lead candidates for the treatment of COVID-19.”

This news article was a review of a preliminary scientific report that had not undergone peer-review at the time of publication. Since its initial publication, the scientific report has now been peer reviewed and accepted for publication in a Scientific Journal. Links to the preliminary and peer-reviewed reports are available in the Sources section at the bottom of this article. View Sources

Journal references:

Article Revisions

  • Apr 7 2023 - The preprint preliminary research paper that this article was based upon was accepted for publication in a peer-reviewed Scientific Journal. This article was edited accordingly to include a link to the final peer-reviewed paper, now shown in the sources section.
Susha Cheriyedath

Written by

Susha Cheriyedath

Susha is a scientific communication professional holding a Master's degree in Biochemistry, with expertise in Microbiology, Physiology, Biotechnology, and Nutrition. After a two-year tenure as a lecturer from 2000 to 2002, where she mentored undergraduates studying Biochemistry, she transitioned into editorial roles within scientific publishing. She has accumulated nearly two decades of experience in medical communication, assuming diverse roles in research, writing, editing, and editorial management.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Cheriyedath, Susha. (2023, April 07). Intranasal COVID-19 therapeutic shows promise in preclinical trials. News-Medical. Retrieved on January 15, 2025 from https://www.news-medical.net/news/20210520/Intranasal-COVID-19-therapeutic-inhibits-SARS-CoV-2-in-preclinical-trials.aspx.

  • MLA

    Cheriyedath, Susha. "Intranasal COVID-19 therapeutic shows promise in preclinical trials". News-Medical. 15 January 2025. <https://www.news-medical.net/news/20210520/Intranasal-COVID-19-therapeutic-inhibits-SARS-CoV-2-in-preclinical-trials.aspx>.

  • Chicago

    Cheriyedath, Susha. "Intranasal COVID-19 therapeutic shows promise in preclinical trials". News-Medical. https://www.news-medical.net/news/20210520/Intranasal-COVID-19-therapeutic-inhibits-SARS-CoV-2-in-preclinical-trials.aspx. (accessed January 15, 2025).

  • Harvard

    Cheriyedath, Susha. 2023. Intranasal COVID-19 therapeutic shows promise in preclinical trials. News-Medical, viewed 15 January 2025, https://www.news-medical.net/news/20210520/Intranasal-COVID-19-therapeutic-inhibits-SARS-CoV-2-in-preclinical-trials.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Playing video games for a couple of hours a day can improve mental health