SARS-CoV-2 mutations strengthen RBD-ACE2 binding, making the virus more infectious

In January 2020, the first complete severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) genome sequence was deposited to GenBank. Since then, the amount of new genome sequences has increased rapidly at GenBank and GISAID. This has laid the foundations for analyzing the virulence, antigenicity, pathogenicity, and transmissibility of SARS-CoV-2 mutations.

Structural and non-structural proteins of SARS-CoV-2

SARS-CoV-2 is a positive-sense single-stranded RNA virus that encodes 29 structural and non-structural proteins (NSPs) using 29,903 nucleotides. The structural proteins help with the formation of the viral particle, while the NSPs play a significant role in replicating viral RNA. SARS-CoV-2 has 4 structural proteins, namely, spike (S), membrane (M), envelope (E), and nucleocapsid (N) proteins.

Of these, the spike (S) protein has 1,273 residues of SARS-CoV-2 and has a critical role in viral infection.  It is essential for interaction with host cell receptors and the fusion of the viral envelope with the host cell membrane to allow entry of the virus. It is also the site of most SARS-CoV-2 mutations. Hence scientists have been focusing their attention on the Spike protein to develop antibody-based drugs and vaccines.

Identifying other fast-growing mutations on the SARS-CoV-2 spike (S) protein

The new variants of SARS-CoV-2 from the UK, Brazil, and South Africa have garnered a lot of attention recently for their increased infectivity, possibly high pathogenicity, and potential threats to currently available vaccines and antibody-based therapies. However, it is not clear if there are more variants with higher infectivity that are being transmitted across the world.

“N501Y involved in the United Kingdom (UK), South Africa, and Brazil variants may moderately weaken the binding between the RBD and many known antibodies.”

Researchers from Michigan State University recently carried out a large-scale study with 506,768 SARS-CoV-2 genome isolates gathered from COVID-19 patients. Their objective was to identify other rapidly growing mutations on the SARS-CoV-2 spike (S) protein receptor-binding domain (RBD). The research is published in the journal Genomics.

Commonly observed mutations strengthen the binding between RBD and host ACE2 receptor

The findings reveal that all 100 of the most observed mutations strengthen the binding between the RBD and the angiotensin-converting enzyme 2 (ACE2) of the host, which indicates that SARS-CoV-2 evolves into more infectious variants. In particular, this enhancement of the binding between RBD and ACE2 is observed in fast-growing RBD mutations such as N439K, S477N, S477R, and N501T.

The researchers further found that the N501Y mutation found in the UK, Brazil, and South Africa variants may modestly weaken the binding between many known antibodies and the RBD. The E484K and K417N mutations found in the Brazilian and South African variants and the L452R and E484Q mutations found in the Indian variants of SARS-CoV-2 can disrupt the binding between the RBD and many antibodies. The L452R RBD mutation is also known to be a part of the California variant named B.1.427.

T478K mutation makes the Mexico strain the most infectious SARS-CoV-2 variant

The mutations most likely to have vaccine-escape capabilities include S494P, K417N, Q493L, F490S, R403K, F486L, L452R, E484K, K417T, E484Q, F490L, and A475S. Also, the T478K mutation seems to make the B.1.1.222 variant found in Mexico the most infectious variant. According to the authors, the RBD mutations that can simultaneously disrupt the existing antibodies (vaccine escape mutations) and make SARS-CoV-2 more infectious may pose a looming threat to the current set of approved vaccines.

The comprehensive genetic analysis and protein-protein binding study by the authors show that the SARS-CoV-2 genetic evolution on the RBD may be regulated by viral proofreading, host gene editing, natural selection, and random genetic drift. This gives rise to more infectious SARS-CoV-2 variants that may compromise existing antibody-based COVID-19 treatment strategies and vaccines.

“Finally, we hypothesize that RBD mutations that can simultaneously make SARS-CoV-2 more infectious and disrupt the existing antibodies, called vaccine escape mutations, will pose an imminent threat to the current crop of vaccines.”

Journal reference:
Susha Cheriyedath

Written by

Susha Cheriyedath

Susha is a scientific communication professional holding a Master's degree in Biochemistry, with expertise in Microbiology, Physiology, Biotechnology, and Nutrition. After a two-year tenure as a lecturer from 2000 to 2002, where she mentored undergraduates studying Biochemistry, she transitioned into editorial roles within scientific publishing. She has accumulated nearly two decades of experience in medical communication, assuming diverse roles in research, writing, editing, and editorial management.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Cheriyedath, Susha. (2021, May 22). SARS-CoV-2 mutations strengthen RBD-ACE2 binding, making the virus more infectious. News-Medical. Retrieved on December 21, 2024 from https://www.news-medical.net/news/20210522/SARS-CoV-2-mutations-strengthen-RBD-ACE2-binding-making-the-virus-more-infectious.aspx.

  • MLA

    Cheriyedath, Susha. "SARS-CoV-2 mutations strengthen RBD-ACE2 binding, making the virus more infectious". News-Medical. 21 December 2024. <https://www.news-medical.net/news/20210522/SARS-CoV-2-mutations-strengthen-RBD-ACE2-binding-making-the-virus-more-infectious.aspx>.

  • Chicago

    Cheriyedath, Susha. "SARS-CoV-2 mutations strengthen RBD-ACE2 binding, making the virus more infectious". News-Medical. https://www.news-medical.net/news/20210522/SARS-CoV-2-mutations-strengthen-RBD-ACE2-binding-making-the-virus-more-infectious.aspx. (accessed December 21, 2024).

  • Harvard

    Cheriyedath, Susha. 2021. SARS-CoV-2 mutations strengthen RBD-ACE2 binding, making the virus more infectious. News-Medical, viewed 21 December 2024, https://www.news-medical.net/news/20210522/SARS-CoV-2-mutations-strengthen-RBD-ACE2-binding-making-the-virus-more-infectious.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Futuristic AI-powered virtual lab designs potent SARS-CoV-2 nanobodies