New vaccine candidate with RBD and N protein targets protects against SARS-CoV-2 in preclinical trials

Numerous vaccines based on different platforms are developed against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus disease 2019 (COVID-19) pandemic.

The SARS-CoV-2 genome encodes four structural proteins—spike (S), membrane (M), envelope (E), and nucleocapsid (N). The S protein binds to the angiotensin-converting enzyme (ACE) receptor on the host cell through its receptor-binding domain (RBD). The RBD is considered the main target antigen for vaccines against SARS-CoV-2.

A recent study published in the journal Science Advances, explores the immunization of RBD with the P2 epitope of tetanus toxoid, to enhance its immunogenicity, and also tests the benefit of N protein in the vaccine.

An interdisciplinary team from South Korea developed a previously unidentified SARS-CoV-2 subunit vaccine (RBD-P2) by fusing the P2 epitope of tetanus toxoid with the RBD of the spike protein. And they tested the efficacy of the RBD-P2 with or without the N protein in mice, rats, and nonhuman primates (NHPs).

Consistent with the previous finding, they found higher neutralizing antibody titers against SARS-CoV-2 in rats when immunized with the RBD-P2 than that with RBD.

Additionally, with the alum as an effective adjuvant, the (RBD-P2 + alum) induced a robust neutralizing antibody response in NHPs, protecting against the SARS-CoV-2 challenge. Thus, they conclude that immunization with RBD-P2 + alum can induce effective and sufficient virus-neutralizing activity and provide protection.

However, the researchers were unable to determine the long-term humoral immunity in NHPs post-RBD-P2 + alum boost, as the primates were challenged with SARS-CoV-2 6 weeks after boosting.

While many of the vaccine candidates currently under clinical or preclinical trials involve at least a portion of the spike protein, it is still unclear whether the N protein of SARS-CoV-2 in combination would be beneficial for immunization protection against the SARS-CoV-2.

Because in vivo protection conferred by vaccines containing the N protein has not yet been experimentally validated, the researchers find out here in the comparative study of the immune responses elicited by RBD-P2 and RBD-P2/N immunization in three different animals—mice, rats, and NHPs.

The researchers found enhanced T cell-mediated immune responses and increased CD69 expression in CD4+ T cells as well as IFN-γ and IL-4 production in mice.

In the study, the NHPs immunized with RBD-P2 or RBD-P2/N were protected from the SARS-CoV-2 challenge. The researchers found increased production of IFN- γ and the numbers of IFN- γ producing cells. However, they noted that the production of TH2-type cytokines (IL-4, IL-5, and IL-13) was very low. They also observed that the RBD-P2/N + alum–immunized NHPs showed faster SARS-CoV-2 clearance than that of RBD-P2 + alum immunized NHPs in throat swab samples.

Thus, increased T cell activation and TH1-prone responses may result in faster viral clearance and constrain viral spread,” observed the researchers.

A significant point discussed in the paper is the focus of the vaccine design on S protein vs. N protein. Because of the mutations in the spike protein, many variants of the SARS-CoV-2 have emerged. Relatively, the N protein is more conserved, and hence the researchers believe that vaccines based on the N protein may provide effective protection against SARS-CoV-2 variants too.

Thus, the researchers believed that the combination of an RBD-P2/N immunization might be advantageous in overcoming escape mechanisms of SARS-CoV-2 because of gene mutations encoding the spike protein.

The researchers discussed the limitations of this study. Due to the concentrations of the RBD-P2 and the N protein used to immunize the NHPs, the effectiveness of the N protein could vary depending on the dose of RBD-P2. While they called for the need for further studies to determine the optimal dose or ratio involving the N protein, they informed that they are evaluating the RBD-P2–based subunit vaccine in clinical trials (phase 1, no. NBP2001) - because RBD-P2 and RBP-P2/N showed similar protective efficacy in NHPs.

In summary, this study demonstrates two highlights: 1) RBD-P2 + alum immunization elicits a robust neutralizing antibody response and provides complete or near-complete elimination of live SARS-CoV-2 virus particles; and 2) the potential use of the N protein provides insight into the development of SARS-CoV-2 vaccines.

Journal reference:
  • So-Hee Hong, Hanseul Oh, Yong Wook Park, Hye Won Kwak, Eun Young Oh, Hyo-Jung Park, Kyung Won Kang , Green Kim , Bon-Sang Koo, Eun-Ha Hwang, Seung Ho Baek, Hyeong-Jun Park, Yu-Sun Lee, Yoo-Jin Bang, Jae-Yong Kim, Seo-Hyeon Bae, Su Jeen Lee, Ki-Weon Seo, Hak Kim, Taewoo Kwon, Ji-Hwan Kim, Seonghwan Lee, Eunsom Kim, Yeonhwa Kim4, Jae-Hak Park, Sang-In Park, Marta Gonçalves, Byung Mook Weon, Haengdueng Jeong, Ki Taek Nam, Kyung-Ah Hwang, Jihye Kim, Hun Kim, Sang-Myeong Lee, Jung Joo Hong, Jae-Hwan Nam. (2021) Immunization with RBD-P2 and N protects against SARS-CoV-2 in nonhuman primates. Science Advances. https://doi.org/10.1126/sciadv.abg7156, https://advances.sciencemag.org/content/7/22/eabg7156
Dr. Ramya Dwivedi

Written by

Dr. Ramya Dwivedi

Ramya has a Ph.D. in Biotechnology from the National Chemical Laboratories (CSIR-NCL), in Pune. Her work consisted of functionalizing nanoparticles with different molecules of biological interest, studying the reaction system and establishing useful applications.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Dwivedi, Ramya. (2021, June 02). New vaccine candidate with RBD and N protein targets protects against SARS-CoV-2 in preclinical trials. News-Medical. Retrieved on November 21, 2024 from https://www.news-medical.net/news/20210602/New-vaccine-candidate-with-RBD-and-N-protein-targets-protects-against-SARS-CoV-2-in-preclinical-trials.aspx.

  • MLA

    Dwivedi, Ramya. "New vaccine candidate with RBD and N protein targets protects against SARS-CoV-2 in preclinical trials". News-Medical. 21 November 2024. <https://www.news-medical.net/news/20210602/New-vaccine-candidate-with-RBD-and-N-protein-targets-protects-against-SARS-CoV-2-in-preclinical-trials.aspx>.

  • Chicago

    Dwivedi, Ramya. "New vaccine candidate with RBD and N protein targets protects against SARS-CoV-2 in preclinical trials". News-Medical. https://www.news-medical.net/news/20210602/New-vaccine-candidate-with-RBD-and-N-protein-targets-protects-against-SARS-CoV-2-in-preclinical-trials.aspx. (accessed November 21, 2024).

  • Harvard

    Dwivedi, Ramya. 2021. New vaccine candidate with RBD and N protein targets protects against SARS-CoV-2 in preclinical trials. News-Medical, viewed 21 November 2024, https://www.news-medical.net/news/20210602/New-vaccine-candidate-with-RBD-and-N-protein-targets-protects-against-SARS-CoV-2-in-preclinical-trials.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Researchers discover mechanism affecting splicing process in retinal cells