Using environmental fluid dynamics to correct COVID-19 pandemic's first wave data inaccuracies

Two COVID-19 pandemic curves emerged within many cities during the one-year period from March 2020 to March 2021.

Oddly, the number of total daily infections reported during the first wave is much lower than that of the second, but the total number of daily deaths reported during the first wave is much higher than the second wave.

This contradiction inspired researchers from the University of Nicosia in Cyprus to explore the uncertainty in the daily number of infections reported during the first wave, caused by insufficient contact tracing between March and April 2020.

In Physics of Fluids, from AIP Publishing, Talib Dbouk and Dimitris Drikakis report using environmental fluid dynamics -- advanced computational multiscale multiphysics modeling and simulations -- to develop a constitutive relationship between weather seasonality conditions, such as temperature, relative humidity, and wind speed, and having two pandemic curves per year.

We integrated a new physics-based relationship into a pandemic forecast model that accurately predicted, as it was later observed, a second COVID-19 pandemic wave within many cities around the world, including New York."

Dimitris Drikakis, Researcher, University of Nicosia in Cyprus

Most, if not all, of the data for the daily number of total new infections reported during the first wave of the pandemic were underestimated and used incorrectly.

"Within the city of New York, our work shows that the daily number of new infections reported during the first wave was underestimated by a factor of four," Dbouk said. "So, the uncertainty of first-wave data mixed with second-wave data means the general conclusions drawn can be misleading, and everyone should be aware of this."

The researchers' work is the first known case of deriving an advanced uncertainty quantification model for the infected cases of the pandemic's first wave based on fluid dynamic simulations of weather effects.

"Our model is physics-based and can rectify first-wave data inadequacies by using second-wave data adequacy within a pandemic curve," said Drikakis. "Our proposed approach combines an environmental weather seasonality-driven virus transmission rate with pandemic multiwave phenomena to improve the data accuracy of statistical predictions."

In the future, the researchers' proposed uncertainty quantification model may help correct the worldwide total number of daily coronavirus infections reported by many cities during the first wave of a pandemic.

Source:
Journal reference:

Dbouk, T & Drikakis, D., (2021) Correcting pandemic data analysis through environmental fluid dynamics. Physics of Fluids. doi.org/10.1063/5.0055299.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study: One-third of older Americans still struggle with loneliness