Transfer learning technique achieves 99.24% success when detecting COVID-19 in chest x-rays

Results of this technique, known as transfer learning, achieved a 99.24 per cent success rate when detecting COVID-19 in chest x-rays.

The study tackles one of the biggest challenges in image recognition machine learning: algorithms needing huge quantities of data, in this case images, to be able to recognize certain attributes accurately.

ECU School of Science researcher Dr Shams Islam said this was incredibly useful for identifying and diagnosing emerging or uncommon medical conditions.

"Our technique has the capacity to not only detect COVID-19 in chest x-rays, but also other chest diseases such as pneumonia. We have tested it on 10 different chest diseases, achieving highly accurate results," he said.

"Normally, it is difficult for AI-based methods to perform detection of chest diseases accurately because the AI models need a very large amount of training data to understand the characteristic signatures of the diseases."

"The data needs to be carefully annotated by medical experts, this is not only a cumbersome process, it also entails a significant cost."

"Our method bypasses this requirement and learns accurate models with a very limited amount of annotated data."

"While this technique is unlikely to replace the rapid COVID-19 tests we use now, there are important implications for the use of image recognition in other medical diagnoses," he said.

Taking a shortcut on training

Lead author and ECU PhD candidate Fouzia Atlaf said the key to significantly decreasing the time needed to adapt the approach to other medical issues was pretraining the algorithm with the large ImageNet database.

ImageNet is a database of more than 1 million images which has been classified by humans - just like chest x-rays by medical professionals would need to be.

The difference is the images in the database are of regular household items which can be classified by people without medical expertise."

Fouzia Atlaf, Lead Author and ECU PhD Candidate

Dr Islam and Ms Altaf hope the technique can be further refined in future research to increase accuracy and further reduce training time.

Source:
Journal reference:

Altaf, F., et al. (2021) A novel augmented deep transfer learning for classification of COVID-19 and other thoracic diseases from X-rays. Neural Computing and Applications. doi.org/10.1007/s00521-021-06044-0.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New study reveals long-term brainstem damage in COVID-19 survivors using advanced MRI scans