Study explores lectins from plants, fungi, algae and cyanobacteria as pan-coronavirus inhibitors

In a recently published article in the journal Cells, scientists have provided a detailed description of the utility of mannose-specific lectins in preventing coronavirus infections. They have specifically explained how mannose-specific lectins derived from plants, algae, fungi, and bacteria selectively bind N-glycans present on the surface of viral spike protein and how such interactions can be medically utilized to control coronavirus transmission.   

Background

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative pathogen of coronavirus disease 2019 (COVID-19), is an enveloped RNA virus belonging to the human beta-coronavirus family. The other two highly pathogenic members of the family include SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV) – both of which responsible for earlier outbreaks this century in 2002 and 2012, respectively.

The common structural features shared by beta-coronaviruses include spike-like protrusions on the viral envelope that participate in viral entry into host cells. These spikes are composed of homotrimers of spike glycoprotein, which is a 130 kDa viral structural protein with two subunits (S1 and S2). The S1 subunit contains the receptor-binding domain (RBD) that targets and binds host cell receptors, which are angiotensin-converting enzyme 2 (ACE2) for SARS-CoV and SARS-CoV-2 and dipeptidyl peptidase 4 (DPP4) for MERS-CoV. On the other hand, the S2 subunit participates in viral envelop – host cell membrane fusion and subsequent entry of viral genome into the host cell.

The spike protein is heavily glycosylated with both complex type and high-mannose type N-glucans that are highly exposed at the spike surface. Because of this structural feature, spike protein is a vital target for mannose-specific lectins, which are a group of heterogeneous proteins with potent antiviral and anticancer properties.

Mannose-specific lectins

Mannose-specific lectins are widely distributed in viruses, bacteria, fungi, algae, plants, animals, and humans. Although highly diverse in structural features and phylogenetic relationship, mannose-specific lectins share a common functional feature of specifically targeting mannose and its derivatives, including complex and high-mannose N-glycans.

Regarding their antiviral properties, several in vitro studies have revealed that mannose-specific lectins prevent viral replication by specifically targeting mannose-containing N-glycans on the viral envelope, such as gp120 for HIV-1 and hemagglutinin for influenza virus.

N-glycans on viral spike protein

N-glycans covering the coronavirus surface are highly diverse in nature. Different patterns of N-glycosylation have been observed at the glycosylation sites of SARS-CoV, SARS-CoV-2, and MERS-CoV. Moreover, studies have shown that spike proteins of SARS-CoV-2 and SARS-CoV share similar N-glycosylation patterns, which is significantly different than that of MERS-CoV.

In addition to N-glycosylation patterns, the distribution of high-mannose and complex N-glycans at the spike surface also differs significantly between coronaviruses. For instance, high-mannose N-glycans are predominantly present at the top of MERS-CoV spike protein, whereas complex glycans are highly distributed at the top of SARS-CoV and SARS-CoV-2 spike.

The distribution of both types of N-glycans differs between coronaviruses, particularly at the top of spike protein, indicating that N-glycans of SARS-CoV, SARS-CoV-2, and MERS-CoV are differentially accessible to mannose-specific lectins of plant, fungi, and bacterial origin. Interestingly, none of the mutations found in SARS-CoV-2 variants of concern, including B.1.1.7 and B.1.351, have been found to alter N-glycosylation sites of the spike protein.

Interaction between mannose-specific lectins and spike glycans

To establish spike glycan interaction networks, glycan-binding assays and glycan array experiments have been performed in many studies. As suggested by these studies, mannose-specific single and two-chain lectins from higher plants interact with complex and high-mannose N-glycans of SARS-CoV, SARS-CoV-2, and MERS-CoV. Compared to single-chain lectins, two-chain lectins such as pea lectin and lentil lectin have a higher affinity for complex glycans.

Mannose-specific jacalin-related lectins (Morniga M) and GNA-related lectins with higher affinity for hybrid glycans and high-mannose glycans, respectively, are known to better interact with MERS-CoV-2 spike than SARS-CoV and SARS-CoV-2 spike.   

Mannose-specific lectins derived from filamentous fungi, including Ascomycota and Basidiomycota, have a higher affinity for high-mannose glycans and complex glycans, respectively. Similarly, lectins from red algae and green algae recognize high-mannose glycans with high affinity. All these lectins are expected to recognize and interact with spike proteins of all human beta-coronaviruses.

Studies investigating direct interaction between mannose-specific lectins and coronavirus spike glycans have revealed antiviral efficacy of GNA-related lectins such as Cymbidium sp. lectin, Hippeastrum hybrid lectin, and Galanthus nivalis lectin against SARS-CoV. Specifically, two target proteins for Hippeastrum hybrid lectin have been identified, which are probably involved in virus-host cell attachment and release of mature virions from infected cells.

Recently, legume-derived mannose-specific lectin FRIL has been found to interfere with SARS-CoV-2 host cell entry by specifically binding spike complex glycans. This lectin has a higher affinity for flucosylated complex type N-glycans. Taken together, these observations highlight the importance of differential distribution patterns of N-glycans on the spike surface that are differentially accessible to and targeted by mannose-specific lectins of diverse origins.

Similar to mannose-specific lectins from plants, mannose-binding lectins of animal origin have been found to selectively inhibit SARS-CoV host cell entry. In contrast, certain membrane-associated mannose-specific human lectins have been found to promote infection and propagation of SARS-CoV by specifically recognizing spike glycans. Recently, inhibition of Galectin-3, a human lectin, has been proposed as a therapeutic intervention to prevent SARS-CoV-2 host cell attachment and suppress inflammation.

Although the exact antiviral mechanism of mannose-specific lectins is still not known, there is evidence suggesting that multivalent lectins like FRIL interact with spike glycans to form virion – lectin aggregates outside host cells. Once endocytosed, these large aggregates are entrapped in the late endosome/lysosomes, which in turn prevent their nuclear import.

Regarding potential biomedical applications, large molecular weight mannose-specific lectins that create steric hindrance by interacting with spike glycans can be used as blocking agents to prevent spike – ACE2 interaction. These blocking agents can be immobilized in air-conditioned filters to entrap SARS-CoV-2 and prevent its transmission.

Moreover, mannose-specific lectins can be used as glycan probes to detect SARS-CoV-2 in the environment. Regarding therapeutic applications, some in vitro studies have shown that mannose-specific lectins can prevent viral entry into host cells but cannot inhibit viral replication within host cells.

Journal reference:
Dr. Sanchari Sinha Dutta

Written by

Dr. Sanchari Sinha Dutta

Dr. Sanchari Sinha Dutta is a science communicator who believes in spreading the power of science in every corner of the world. She has a Bachelor of Science (B.Sc.) degree and a Master's of Science (M.Sc.) in biology and human physiology. Following her Master's degree, Sanchari went on to study a Ph.D. in human physiology. She has authored more than 10 original research articles, all of which have been published in world renowned international journals.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Dutta, Sanchari Sinha Dutta. (2021, July 01). Study explores lectins from plants, fungi, algae and cyanobacteria as pan-coronavirus inhibitors. News-Medical. Retrieved on December 22, 2024 from https://www.news-medical.net/news/20210701/Study-explores-lectins-from-plants-fungi-algae-and-cyanobacteria-as-pan-coronavirus-inhibitors.aspx.

  • MLA

    Dutta, Sanchari Sinha Dutta. "Study explores lectins from plants, fungi, algae and cyanobacteria as pan-coronavirus inhibitors". News-Medical. 22 December 2024. <https://www.news-medical.net/news/20210701/Study-explores-lectins-from-plants-fungi-algae-and-cyanobacteria-as-pan-coronavirus-inhibitors.aspx>.

  • Chicago

    Dutta, Sanchari Sinha Dutta. "Study explores lectins from plants, fungi, algae and cyanobacteria as pan-coronavirus inhibitors". News-Medical. https://www.news-medical.net/news/20210701/Study-explores-lectins-from-plants-fungi-algae-and-cyanobacteria-as-pan-coronavirus-inhibitors.aspx. (accessed December 22, 2024).

  • Harvard

    Dutta, Sanchari Sinha Dutta. 2021. Study explores lectins from plants, fungi, algae and cyanobacteria as pan-coronavirus inhibitors. News-Medical, viewed 22 December 2024, https://www.news-medical.net/news/20210701/Study-explores-lectins-from-plants-fungi-algae-and-cyanobacteria-as-pan-coronavirus-inhibitors.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
How viral persistence and immune dysfunction drive long COVID