Rapid quantification of SARS-CoV-2 Spike-specific T cells by direct peptide stimulation of whole peripheral blood

The immune response that protects an individual from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19 (coronavirus disease 2019), involves the activation of neutralizing antibodies, antigen-binding antibodies, and antiviral T cells, among other reactions.

There is evidence that individuals with SARS-CoV-2 infection but not severe clinical COVID-19 symptoms present antibodies and T cells, which are able to help them control the infection.

There is, however, still some uncertainty about the level of antibodies and/or T cells that are necessary for such protection. Is immunity mediated by differences in the antibody levels and the T cell levels among vaccinated subjects?

Correlates of protection

To understand both the correlates of protection induced by vaccinations and the necessary immune responses to manage the COVID-19, researchers from Singapore used an alternative method to closely evaluate the kinetics and magnitude of specific T cell responses to SARS-CoV-2 infection. Their work was posted to the bioRxiv* preprint server while awaiting peer review.

This news article was a review of a preliminary scientific report that had not undergone peer-review at the time of publication. Since its initial publication, the scientific report has now been peer reviewed and accepted for publication in a Scientific Journal. Links to the preliminary and peer-reviewed reports are available in the Sources section at the bottom of this article. View Sources

In this study, the researchers tested the sensitivity and performance of a simple, rapid SARS‐CoV‐2 Spike‐specific T cell test based on stimulation of whole blood with peptides covering the SARS‐CoV‐2 Spike protein. The Spike protein is a structural glycoprotein that envelopes the virus, binds to the host receptor, and enables viral entry and fusion.

Spike‐specific T cells

The researchers detected and quantified the Spike‐specific T cells in vaccinated individuals through the simple addition of Spike peptide pools to whole blood. Importantly, the cohorts in the study included 1) BNT162b2 vaccinated, 2) convalescent asymptomatic and 3) symptomatic COVID‐19 patients, and 4) SARS‐CoV‐1 convalescent individuals. The test included cytokine (IFN‐γ, IL‐2) measurement.

“In this work, by sequentially testing vaccinated and SARS‐CoV‐2 convalescent individuals, we show that IL‐2 and IFN‐γ  quantification in whole blood measured Spike‐specific T cell response with an accuracy equivalent to ELISPOT assays performed in freshly purified PBMC.”  

A wide dynamic range of Spike‐specific T cell responses after vaccination was revealed in this study. However, the researchers noted that these results could not be predicted from neutralizing antibody quantities.

“Efforts to define the protective threshold of antibodies through mathematical modeling have shed some light on this issue, but such work on T cell responses have so far been absent.”

The researchers collected whole fresh blood from individuals before and after vaccinations. The blood was either directly stimulated with peptides for a cytokine release assay (CRA) or processed to isolate PBMCs by Ficoll density gradient centrifugation.

The researchers demonstrated that assessing the Spike‐specific T cell response directly from the fresh whole blood yields reliably comparable results to the classical T cell assays.

Further, they demonstrated that the whole blood CRA could be used to rapidly define T cell immunogenic regions of the whole Spike protein.

“Taken together, these data show that direct analysis of cytokines secreted in whole blood pulsed with different peptides constitutes a reliable method to gauge the presence and magnitude of functional T cells specific for epitopes covered by the utilized peptides,” observed the researchers in the study.

The researchers analyzed the Spike‐specific T cell response in a larger cohort of BNT162b2 vaccinated individuals and in individuals who have recovered from SARS‐CoV‐2 and SARS‐CoV‐1 infection using the whole blood CRA with SpG peptide pool as a stimulant. Importantly, using the rapid cytokine assay, they detected the Spike‐specific T cells in ~84% of the SARS‐CoV‐2 individuals one year after the infection and also in 8 out of 12 SARS‐CoV‐1 patients 18 years after infection.

In their paper, the researchers compare the specific T-cell responses to the two viruses using different cohorts and demonstrate the wide dynamic range and heterogeneous nature of Spike‐specific T-cell responses. They also pointed out that quantifying IL‐2 secretion provides better sensitivity over IFN‐γ in detecting individuals with a long‐term Spike‐specific memory T cell response.

“Though speculative at the moment, this lack of difference between IFN‐γ and IL‐2 secretion could reflect a better functionality of Spike‐specific T cell response and hence plausibly contribute to the benign disease trajectory in these individuals.”

According to the researchers, no significant correlations between neutralizing antibodies and Spike-specific T cell responses were found among the analyzed groups.

“The rapidity, simplicity, and accuracy of the cytokine release assay (CRA) in whole blood can allow a routine measurement of SARS‐CoV‐2 T cells in large populations and thus help in understanding the role of antiviral T cells during the current COVID‐19 pandemic.”

Importantly, this study has shown that the tests of cytokine release in the stimulated whole blood do not detect the mere presence of T cells but also their functionality. The measurement of the wide dynamic range of functional Spike‐specific T cells helps evaluate the protective ability of T cells after infection or vaccination.

Because the quantity of Spike‐specific T cells cannot be predicted by simple antibodies measurement, this higher throughput and simple assay represent a feasible approach to implement in routine testing. In addition, this technique will complement existing measurements of antibodies and provide valuable information for formulating vaccine strategies, the researchers say.

This news article was a review of a preliminary scientific report that had not undergone peer-review at the time of publication. Since its initial publication, the scientific report has now been peer reviewed and accepted for publication in a Scientific Journal. Links to the preliminary and peer-reviewed reports are available in the Sources section at the bottom of this article. View Sources

Journal references:
  • Preliminary scientific report. Rapid determination of the wide dynamic range of SARS-CoV-2 Spike T cell responses in whole blood of vaccinated and naturally infected, Anthony T Tan, Joey Ming Er Lim, Nina Le Bert, Kamini Kunasegaran, Adeline Chia, Martin Daniel Co Qui, Nicole Tan, Wan Ni Chia, Ruklanthi de Alwis, Ding Ying, Eng Eong Ooi, Lin-Fa Wang, Mark I-Cheng Chen, Barnaby Young, Li Yang Hsu, Jenny GH Low, David Chien Lye, Antonio Bertoletti, bioRxiv, 2021.06.29.450293; doi: https://doi.org/10.1101/2021.06.29.450293, https://www.biorxiv.org/content/10.1101/2021.06.29.450293v1
  • Peer reviewed and published scientific report. Tan, Anthony T., Joey M.E. Lim, Nina Le Bert, Kamini Kunasegaran, Adeline Chia, Martin D.C. Qui, Nicole Tan, et al. 2021. “Rapid Measurement of SARS-CoV-2 Spike T Cells in Whole Blood from Vaccinated and Naturally Infected Individuals.” Journal of Clinical Investigation 131 (17). https://doi.org/10.1172/jci152379https://www.jci.org/articles/view/152379.

Article Revisions

  • Apr 10 2023 - The preprint preliminary research paper that this article was based upon was accepted for publication in a peer-reviewed Scientific Journal. This article was edited accordingly to include a link to the final peer-reviewed paper, now shown in the sources section.
Dr. Ramya Dwivedi

Written by

Dr. Ramya Dwivedi

Ramya has a Ph.D. in Biotechnology from the National Chemical Laboratories (CSIR-NCL), in Pune. Her work consisted of functionalizing nanoparticles with different molecules of biological interest, studying the reaction system and establishing useful applications.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Dwivedi, Ramya. (2023, April 10). Rapid quantification of SARS-CoV-2 Spike-specific T cells by direct peptide stimulation of whole peripheral blood. News-Medical. Retrieved on November 22, 2024 from https://www.news-medical.net/news/20210705/Rapid-quantification-of-SARS-CoV-2-Spike-specific-T-cells-by-direct-peptide-stimulation-of-whole-peripheral-blood.aspx.

  • MLA

    Dwivedi, Ramya. "Rapid quantification of SARS-CoV-2 Spike-specific T cells by direct peptide stimulation of whole peripheral blood". News-Medical. 22 November 2024. <https://www.news-medical.net/news/20210705/Rapid-quantification-of-SARS-CoV-2-Spike-specific-T-cells-by-direct-peptide-stimulation-of-whole-peripheral-blood.aspx>.

  • Chicago

    Dwivedi, Ramya. "Rapid quantification of SARS-CoV-2 Spike-specific T cells by direct peptide stimulation of whole peripheral blood". News-Medical. https://www.news-medical.net/news/20210705/Rapid-quantification-of-SARS-CoV-2-Spike-specific-T-cells-by-direct-peptide-stimulation-of-whole-peripheral-blood.aspx. (accessed November 22, 2024).

  • Harvard

    Dwivedi, Ramya. 2023. Rapid quantification of SARS-CoV-2 Spike-specific T cells by direct peptide stimulation of whole peripheral blood. News-Medical, viewed 22 November 2024, https://www.news-medical.net/news/20210705/Rapid-quantification-of-SARS-CoV-2-Spike-specific-T-cells-by-direct-peptide-stimulation-of-whole-peripheral-blood.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Futuristic AI-powered virtual lab designs potent SARS-CoV-2 nanobodies