SARS-CoV-2 may have consequences to host cells beyond evoking an immune response

Recent data indicates that individuals are experiencing coronavirus disease 2019 (COVID-19) symptoms long after clearing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which suggests the virus has profound consequences to host cells.

Study: SARS-CoV-2 triggers DNA damage response in Vero E6 cells. Image Credit: Festa/ ShutterstockStudy: SARS-CoV-2 triggers DNA damage response in Vero E6 cells. Image Credit: Festa/ Shutterstock

This news article was a review of a preliminary scientific report that had not undergone peer-review at the time of publication. Since its initial publication, the scientific report has now been peer reviewed and accepted for publication in a Scientific Journal. Links to the preliminary and peer-reviewed reports are available in the Sources section at the bottom of this article. View Sources

RNA viruses, such as SAR-CoV-2, are renowned for activating the DNA damage response (DDR) pathway and inducing DNA damage due to their replication cycle within host cells. The signaling pathways ataxia-telangiectasia mutated (ATM), ataxia-telangiectasia and RAD3-related (ATR), and DNA protein kinase (DNA-PK) mediate the DDR. The DDR pathway functions as a crucial part of an intracellular defense system that activates when lesions are detected on the DNA to aid in the repairing of damaged DNA.

When there is a failure in DNA repair, apoptosis is induced, or DNA damage tolerance or translesion synthesis (TLS) is activated, which permits the cell's survival even though DNA damage is present. A study available on the preprint server bioRxiv* examined the ability of SARS-CoV-2 to impact DNA damage response and telomere stability in Vero E6 cells.

A preprint version of the study is available on the bioRxiv* server while the article undergoes peer review.

How was the procedure prepared?

The Vero E6 cells were infected with SARS-CoV-2  and incubated for 48 hours before further downstream processing. The Vero E6 cells were incubated for 10 minutes with RLT buffer containing 2-Mercaptoethanol, to extract the RNA from the infected cell lysates.

The harvested RNA was then quantified via the Nanodrop 2000. Then it was diluted until the concentration of RNA was 10ng/µl in each sample. Quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR) was then performed. Telomere lengths were then measured using primers that detect telomeric repeats.

What did the authors find?

Following the infection with SARS-CoV-2, the ATR DDR was activated. A substantial increase in the transcription expression of ATR and checkpoint kinase 1 (CHK1), the downstream effector molecule of ATR, and elevated phosphorylation of CHK1 protein, indicated activated ATR DDR. Within infected cells, there was no increase of the total ATR protein levels or phosphorylation of the ATR protein, which suggests the comprehensive elevation in ATR levels corresponding to the elevated mRNA levels could have materialized before the 48-hour testing time. Levels of CHK1 protein and total ATR were observed to be reduced at 48 hours.

H2AX phosphorylation protein was also observed to increase, despite an insufficient increase in ATM transcript expression. It was concluded that the ATR DDR pathway is activated in host cells when a SARS-CoV-2 infection occurs, which may impart an unknown proliferation potential to its infectious cycle.

Breaks in the host double-strand DNA drive ATR activation with retroviral infections such as HIV during viral DNA integration, which leaves single-strand gaps. Infectious bronchitis virus (IBV), an RNA virus of the same family as SARS-CoV-2, has been shown to manipulate the ATR DDR to propel their infection cycle.

It was observed that within 48 hours, the telomere lengths within SARS-CoV-2 infected cells had relatively shortened compared with the uninfected control cells. Also, the expression of TRF2, which functions to protect telomers, was significantly suppressed in the SARS-CoV-2 infected cells.

Concluding insights

COVID-19 has infected millions of people worldwide and has unknown potential for long-lasting health complications. It is now becoming vital that the pathobiological consequences in recovered patients are studied, especially with the continuous emergence of new strains.

This study shows that SARS-CoV-2 infection in Vero E6 cells affects telomere function and triggers ATR DDR, which are closely associated with genome stability.

This news article was a review of a preliminary scientific report that had not undergone peer-review at the time of publication. Since its initial publication, the scientific report has now been peer reviewed and accepted for publication in a Scientific Journal. Links to the preliminary and peer-reviewed reports are available in the Sources section at the bottom of this article. View Sources

Journal references:

Article Revisions

  • Apr 12 2023 - The preprint preliminary research paper that this article was based upon was accepted for publication in a peer-reviewed Scientific Journal. This article was edited accordingly to include a link to the final peer-reviewed paper, now shown in the sources section.
Colin Lightfoot

Written by

Colin Lightfoot

Colin graduated from the University of Chester with a B.Sc. in Biomedical Science in 2020. Since completing his undergraduate degree, he worked for NHS England as an Associate Practitioner, responsible for testing inpatients for COVID-19 on admission.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Lightfoot, Colin. (2023, April 12). SARS-CoV-2 may have consequences to host cells beyond evoking an immune response. News-Medical. Retrieved on November 21, 2024 from https://www.news-medical.net/news/20210913/SARS-CoV-2-may-have-consequences-to-host-cells-beyond-evoking-an-immune-response.aspx.

  • MLA

    Lightfoot, Colin. "SARS-CoV-2 may have consequences to host cells beyond evoking an immune response". News-Medical. 21 November 2024. <https://www.news-medical.net/news/20210913/SARS-CoV-2-may-have-consequences-to-host-cells-beyond-evoking-an-immune-response.aspx>.

  • Chicago

    Lightfoot, Colin. "SARS-CoV-2 may have consequences to host cells beyond evoking an immune response". News-Medical. https://www.news-medical.net/news/20210913/SARS-CoV-2-may-have-consequences-to-host-cells-beyond-evoking-an-immune-response.aspx. (accessed November 21, 2024).

  • Harvard

    Lightfoot, Colin. 2023. SARS-CoV-2 may have consequences to host cells beyond evoking an immune response. News-Medical, viewed 21 November 2024, https://www.news-medical.net/news/20210913/SARS-CoV-2-may-have-consequences-to-host-cells-beyond-evoking-an-immune-response.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Phase 2 study evaluates safety and efficacy of asunercept in COVID-19 patients