Natural SARS-CoV-2 infection induces more durable immunity than vaccination study suggests

In a report currently available on the bioRxiv* preprint server, scientists from the USA have demonstrated that immunity induced by mRNA-based coronavirus disease 2019 (COVID-19) vaccines in previously severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected people has the highest robustness and durability with cross-reactivity against different viral variants.

Study: Differential antibody dynamics to SARS-CoV-2 infection and vaccination. Image Credit: Andrii Vodolazhskyi/ ShutterstockStudy: Differential antibody dynamics to SARS-CoV-2 infection and vaccination. Image Credit: Andrii Vodolazhskyi/ Shutterstock

This news article was a review of a preliminary scientific report that had not undergone peer-review at the time of publication. Since its initial publication, the scientific report has now been peer reviewed and accepted for publication in a Scientific Journal. Links to the preliminary and peer-reviewed reports are available in the Sources section at the bottom of this article. View Sources

Background

The mRNA-based COVID-19 vaccines developed by Pfizer/BioNTech and Moderna have shown more than 90% efficacy in preventing severe disease. These vaccines contain spike protein of the original Wuhan strain of SARS-CoV-2. Thus, there remains a risk of attenuated vaccine efficacy against newly emerging variants with mutated spike proteins. Moreover, the global appearance of vaccine-breakthrough infections further questions the durability of vaccine efficacy in real-world situations. Thus, it is important to identify factors responsible for a robust and durable humoral immunity to gain maximum benefits from vaccination.

In the current study, the scientists have characterized the robustness, durability, and cross-reactivity of antibody response induced by natural SARS-CoV-2 infection and mRNA-based COVID-19 vaccination. Moreover, they have tested the antibody dynamics in vaccinated people who were previously infected with SARS-CoV-2.

A preprint version of the study is available on the bioRxiv* server while the article undergoes peer review.

Immunity induced by infection and vaccination

To understand the impact of prior infection on vaccination, the scientists determined the dynamics of anti-spike and anti-receptor binding domain (RBD) IgG antibodies in three groups of individuals: 1) COVID-19 recovered individuals without vaccination; 2) COVID-19 recovered individuals with vaccination, and 3) vaccinated individuals without previous infection.

The findings revealed that the durability of antibody response was highest upon natural SARS-CoV-2 infection, with preservation of 60 to 80% of peak antibody levels for up to 220 days post-symptom onset. In contrast, the highest magnitude of antibody response was observed in COVID-19 recovered individuals who had received the first vaccine dose. Compared to COVID-19 recovered individuals, vaccinated individuals with or without vaccination showed a relatively higher peak antibody level. In fully vaccinated SARS-CoV-2 naïve individuals, the antibody levels after 134 days of second vaccination reduced to the levels observed in unvaccinated COVID-19 recovered individuals after 220 days of symptom onset.

Regarding cross-reactive neutralization, plasma samples derived from vaccinated individuals with previous infection showed the highest neutralization efficacy against a range of viral variants. In vaccinated SARS-CoV-2 naïve individuals, the cross-reactive neutralization levels after six months of second vaccination reduced to the level observed in previously infected, unvaccinated individuals after 220 days of symptom onset.

Cross-reactive immunity induced by infection and vaccination

Plasma samples collected from COVID-19 recovered individuals showed significantly higher neutralization against the gamma variant and lower neutralization against the delta variant after 220 days of symptom onset compared to that observed at the initial stage of infection. The lowest neutralization was observed against the beta variant.

Importantly, a significantly higher neutralization efficacy against all tested variants (alpha, beta, gamma, and delta) was observed in unvaccinated COVID-19 recovered individuals than in vaccinated SARS-CoV-2-naïve individuals. A comparable neutralization potency against the delta variant was observed in COVID-19 recovered individuals and first dose-vaccinated naïve individuals. However, a significant reduction in neutralization potency was observed after the second vaccine dose. This finding indicates that mRNA vaccine-induced cross-reactivity is lower than that induced by natural infection.

A series of experiments conducted to identify the factors responsible for a durable immune response indicated that a long-lasting humoral immunity is associated with high frequencies of spike-reactive memory B cells originated from prior exposure to seasonal human coronaviruses. These memory B cells showed higher levels of somatic hypermutation. Moreover, individuals with long-lasting immunity showed higher frequencies of overall memory B cells reactive to the spike S2 subunit, which is highly conserved across human coronaviruses.   

Regarding cross-neutralization, a significantly high proportion of COVID-19 recovered individuals with long-lasting immunity showed cross-reactive neutralization against all tested variants after 220 days of symptom onset. Further analysis revealed that long-lasting cross-neutralization is associated with high levels of anti-spike and anti-RBD antibody levels.

Study significance

The study findings reveal that natural infection induces moderate-intensity immunity against SARS-CoV-2 and its variants that remain stable for a long period. In contrast, mRNA-based COVID-19 vaccine-induced immunity gradually declines with time, despite an early robust magnitude. Importantly, vaccines offer the highest level of protection against SARS-CoV-2 infection in COVID-19 recovered individuals.

This news article was a review of a preliminary scientific report that had not undergone peer-review at the time of publication. Since its initial publication, the scientific report has now been peer reviewed and accepted for publication in a Scientific Journal. Links to the preliminary and peer-reviewed reports are available in the Sources section at the bottom of this article. View Sources

Journal references:

Article Revisions

  • Apr 12 2023 - The preprint preliminary research paper that this article was based upon was accepted for publication in a peer-reviewed Scientific Journal. This article was edited accordingly to include a link to the final peer-reviewed paper, now shown in the sources section.
Dr. Sanchari Sinha Dutta

Written by

Dr. Sanchari Sinha Dutta

Dr. Sanchari Sinha Dutta is a science communicator who believes in spreading the power of science in every corner of the world. She has a Bachelor of Science (B.Sc.) degree and a Master's of Science (M.Sc.) in biology and human physiology. Following her Master's degree, Sanchari went on to study a Ph.D. in human physiology. She has authored more than 10 original research articles, all of which have been published in world renowned international journals.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Dutta, Sanchari Sinha Dutta. (2023, April 12). Natural SARS-CoV-2 infection induces more durable immunity than vaccination study suggests. News-Medical. Retrieved on November 24, 2024 from https://www.news-medical.net/news/20210915/Natural-SARS-CoV-2-infection-induces-more-durable-immunity-than-vaccination.aspx.

  • MLA

    Dutta, Sanchari Sinha Dutta. "Natural SARS-CoV-2 infection induces more durable immunity than vaccination study suggests". News-Medical. 24 November 2024. <https://www.news-medical.net/news/20210915/Natural-SARS-CoV-2-infection-induces-more-durable-immunity-than-vaccination.aspx>.

  • Chicago

    Dutta, Sanchari Sinha Dutta. "Natural SARS-CoV-2 infection induces more durable immunity than vaccination study suggests". News-Medical. https://www.news-medical.net/news/20210915/Natural-SARS-CoV-2-infection-induces-more-durable-immunity-than-vaccination.aspx. (accessed November 24, 2024).

  • Harvard

    Dutta, Sanchari Sinha Dutta. 2023. Natural SARS-CoV-2 infection induces more durable immunity than vaccination study suggests. News-Medical, viewed 24 November 2024, https://www.news-medical.net/news/20210915/Natural-SARS-CoV-2-infection-induces-more-durable-immunity-than-vaccination.aspx.

Comments

  1. Mark Chadourne Mark Chadourne United Kingdom says:

    Why are scientists overlooking the obvious?
    You're so focused on immunity from vaccines or previous infection. Most healthy people of working age (younger than 70 years) that have no pre-existing health conditions (comorbidities) who got COVID prior to vaccination survived the virus. They did not have ANY "natural immunity". We all have immune systems and they are doing their job just fine, without the aid of medical intervention (vaccines). Why aren't you focusing on just treating the vulnerable instead of coercing the whole world to take these drugs when most people survive?

    • Peter Nyikos Peter Nyikos United States says:

      Are you addressing Dr. Dutta, or the science establishment? The first sentence suggests the former, the last sentence suggests the latter.

      The only thing that could link the last sentence to Dr. Dutta is a statement unrelated to any research that she mentions elsewhere: "Importantly, vaccines offer the highest level of protection against SARS-CoV-2 infection in COVID-19 recovered individuals."

      In the context of the rest of the article, I interpret this as saying, "vaccines good, recovery from Covid-19 better, giving recovered patients the vaccine best."  However, given the low rate of reinfection (6.7 times lower than in vaccinated individuals, according to an exhaustive study of all cases in Israel between May 1 and July 13), adverse effects of vaccination after recovery need to be weighed into the balance.

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Phase 2 study evaluates safety and efficacy of asunercept in COVID-19 patients