Study supports efficacy and safety of lung-selective nanotherapy against SARS-CoV-2 infection

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has proved to evade neutralization by antibodies elicited by vaccination and natural infection with the ancestral strains by the emergence of new variants. New therapeutic measures are essential to achieve better control of viral spread and disease severity.

Study: Lung-selective Cas13d-based nanotherapy inhibits lethal SARS-CoV-2 infection by targeting host protease Ctsl. Image Credit: alphaspirit.it/ ShutterstockStudy: Lung-selective Cas13d-based nanotherapy inhibits lethal SARS-CoV-2 infection by targeting host protease Ctsl. Image Credit: alphaspirit.it/ Shutterstock

This news article was a review of a preliminary scientific report that had not undergone peer-review at the time of publication. Since its initial publication, the scientific report has now been peer reviewed and accepted for publication in a Scientific Journal. Links to the preliminary and peer-reviewed reports are available in the Sources section at the bottom of this article. View Sources

A new preprint shows the potential role of a host protease cathepsin L (Ctsl) inhibitor, which mediates viral entry into the host cell by its effect on the viral spike protein.  

A preprint version of the study is available on the bioRxiv* server while the article undergoes peer review.

Background

SARS-CoV-2 entry into host cells is a complex process that depends on the actions of specific host proteases, including TMPRSS2 and Cathepsin L (Ctsl). Even though Ctsl is an entry factor for SARS-CoV-2, attempts to use Ctsl inhibitors to achieve the in vivo suppression of viral entry into the host cell have not been met with much success in the presence of the alternative entry protease, TMPRSS2.

For this reason, the current study aimed to knock out the Ctsl gene using gene therapy, and cause impaired function of the host protease more efficiently than the use of molecular inhibitors of the enzyme. This increase in efficacy maybe because of the ability to block the host protease's catalytic and non-catalytic domains.

A challenge faced by researchers in this area is the known importance of the cathepsins in a host of physiological processes, including the immune response and development.

To overcome this obstacle, the authors of this paper focused on the transient knockdown of Ctsl mRNA transcripts using CRISPR/CasRx. The advantage of this approach over the older and powerful CRISPR/Cas9 system is that it does not cause permanent deletion of the Ctsl gene.

It has been shown that CasRx can knock down Ctsl mRNA while allowing other cathepsins to be expressed in a pristine fashion, thus ensuring that the processes regulated by them continue to function unimpaired. For instance, Ctsl has a major role in antigen processing, antigen presentation, and antibody generation, all of which are crucial components of humoral and cellular immunity.

What did the study show?

An important finding was that this system protected mice expressing the human ACE2 receptor and exposed to SARS-CoV-2 at a lethal dose after pretreatment with the LNP-CasRx-pre-gCtsl system.

The mechanism of action of this therapy may be via a reduction of the viral load, with a corresponding decline in the concentrations of cytokines and chemokines, both of which prevent severe lung pathology.

In vitro, this knockdown is found to suppress the entry of SARS-CoV-2 into cells whether or not they express the other host protease implicated in viral entry – TMPRSS2. This finding emphasizes the need for Ctsl for viral entry by several different pathways.

The Delta variant of the virus has rapidly become dominant over most of the globe, being far more transmissible than earlier variants. Part of the reason for this is the massive increase in viral entry caused by the increased rate of cleavage of the viral spike protein that is essential to accomplish virus-cell membrane fusion and endocytosis of the virus.

Ctsl knockdown inhibits the entry of the Delta variant into cells expressing TMPRSS2, indicating that Ctsl-mediated cleavage of this spike variant may be a prerequisite for infection. This could mean that Ctsl is a virulence-enhancing factor for the Delta variant.

With fears of future pandemics caused by other coronaviruses, much attention is being paid to the development of pan-coronavirus therapies and prophylactics. In this context, it is gratifying that the LNP-CasRx-pre-gCtsl system also prevents the entry of pseudoviruses expressing the SARS-CoV spike into TMPRSS2 cells.

What are the implications?

The researchers developed an mRNA-directed approach to suppress lung Ctsl activity specifically and block lethal SARS-CoV-2 infection in a mouse model using a CRISPR/Cas13d-based nanoparticle therapy.

The nanotherapy successfully reduced lung Ctsl expression efficiently and safely, avoiding off-target effects by its specificity. The pretreated mice survived the lethal dose of the virus as the therapy reduced the viral load in the lungs, prevented a cytokine storm in these organs, and prevented severe interstitial pneumonia.

Ctsl is implicated in the entry of several wild-type and mutant coronaviruses into the host cell. Most of these viruses do not mutate at a high rate in the Ctsl target site – the cleavage site between the S1/S2 interface and the S2 position that gives rise to the fusion peptide. As such, a Ctsl knockdown strategy could offer a viable and effective approach to treating and preventing such viral infections.

The CasRx RNA editor is also versatile, allowing genomic RNAs to be designed to order within the CasRx-based LNP system so that they can knock down any host factor as required to inhibit coronavirus infection.

The broad spectrum of in vitro activity, covering SARS-CoV and SARS-CoV-2 spike proteins and the Delta variant, independent of TMPRSS2 expression, is an encouraging finding. These results should be investigated further in clinical trials.

This news article was a review of a preliminary scientific report that had not undergone peer-review at the time of publication. Since its initial publication, the scientific report has now been peer reviewed and accepted for publication in a Scientific Journal. Links to the preliminary and peer-reviewed reports are available in the Sources section at the bottom of this article. View Sources

Journal references:

Article Revisions

  • Apr 25 2023 - The preprint preliminary research paper that this article was based upon was accepted for publication in a peer-reviewed Scientific Journal. This article was edited accordingly to include a link to the final peer-reviewed paper, now shown in the sources section.
Dr. Liji Thomas

Written by

Dr. Liji Thomas

Dr. Liji Thomas is an OB-GYN, who graduated from the Government Medical College, University of Calicut, Kerala, in 2001. Liji practiced as a full-time consultant in obstetrics/gynecology in a private hospital for a few years following her graduation. She has counseled hundreds of patients facing issues from pregnancy-related problems and infertility, and has been in charge of over 2,000 deliveries, striving always to achieve a normal delivery rather than operative.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Thomas, Liji. (2023, April 25). Study supports efficacy and safety of lung-selective nanotherapy against SARS-CoV-2 infection. News-Medical. Retrieved on November 24, 2024 from https://www.news-medical.net/news/20211008/Study-supports-efficacy-and-safety-of-lung-selective-nanotherapy-against-SARS-CoV-2-infection.aspx.

  • MLA

    Thomas, Liji. "Study supports efficacy and safety of lung-selective nanotherapy against SARS-CoV-2 infection". News-Medical. 24 November 2024. <https://www.news-medical.net/news/20211008/Study-supports-efficacy-and-safety-of-lung-selective-nanotherapy-against-SARS-CoV-2-infection.aspx>.

  • Chicago

    Thomas, Liji. "Study supports efficacy and safety of lung-selective nanotherapy against SARS-CoV-2 infection". News-Medical. https://www.news-medical.net/news/20211008/Study-supports-efficacy-and-safety-of-lung-selective-nanotherapy-against-SARS-CoV-2-infection.aspx. (accessed November 24, 2024).

  • Harvard

    Thomas, Liji. 2023. Study supports efficacy and safety of lung-selective nanotherapy against SARS-CoV-2 infection. News-Medical, viewed 24 November 2024, https://www.news-medical.net/news/20211008/Study-supports-efficacy-and-safety-of-lung-selective-nanotherapy-against-SARS-CoV-2-infection.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study finds nirmatrelvir-ritonavir reduces severe COVID-19 and long COVID risks in high-risk patients