Therapeutics that target ceramides may help treat cardiometabolic disease

Therapeutics that target lipids called ceramides might hold potential for treating cardiometabolic disease, argues a review article published November 5th in the journal Trends in Pharmacological Sciences. The authors summarize evidence supporting a strong relationship between ceramides and a range of diseases in animals and humans and compare it to the decades of datasets that drove the creation of cholesterol-lowering pharmaceuticals.

"Scientists have a lot to do if we are going to realize the potential of ceramide-lowering therapies," says senior study author Scott Summers (@ScottSummers339) of the University of Utah College of Health. "Our hope with the article was to compare the body of literature on ceramides with that of cholesterol in order to point out the critical gaps and emerging questions in the ceramide field. Basically, we want to get as many labs as possible studying this important molecule."

One of the most widely prescribed drug classes is statins, which inhibit the synthesis of the lipid cholesterol to prevent coronary artery disease. Statins also reduce blood levels of other lipids such as ceramides. Compared to what we know about cholesterol, much less is known about the role of ceramides in disease. But it is becoming increasingly clear that ceramides are linked to a broad swath of health problems.

Over the past couple of decades, studies in humans have shown that ceramides are standalone biomarkers of cardiovascular disease, independent of cholesterol. Ceramides strongly predict major adverse cardiovascular events, including death due to coronary artery disease and acute coronary syndrome. These results have been replicated across the world in different countries and ethnicities, highlighting the robust nature of the association. Unlike cholesterol, ceramides have also been linked to metabolic conditions such as insulin resistance and diabetes in humans. Blood ceramides are now being measured clinically to assess disease risk.

Research in animals has provided evidence for a causal relationship and revealed potential disease mechanisms. For example, lowering ceramides through genetic or pharmacological interventions prevents cardiovascular disease and diabetes in rodents. Other studies have shown that ceramides can lead to an increase in fat storage, a decrease in glucose use, and lower mitochondrial efficiency-;hallmarks of metabolic syndrome. Ultimately, these metabolic changes might lead to programmed cell death of pancreatic b-cells, thereby driving type 2 diabetes.

Ceramides may prove to be as deleterious as cholesterol, as they elicit a non-overlapping spectrum of tissue defects and ultimately trigger cell death."

Scott Summers, Senior Study Author

Despite the accumulating evidence, many questions remain. Currently, there is a lack of data to support specific clinical recommendations based on high ceramide scores. More research is also needed to understand the genetic abnormalities that drive high ceramide levels and how ceramides damage cells and tissues. According to the article's authors, answering these questions might shed light on potential therapeutic approaches to safely and effectively lower ceramides and treat cardiometabolic disease. "Hopefully help is on the horizon, either in the way of new therapeutics or new diet recommendations," Summers says.

This work was supported by the National Institutes of Health, the Juvenile Diabetes Research Foundation, the American Diabetes Association, the American Heart Association, and the Margolis Foundation. Scott Summers is a consultant, co-founder, and shareholder of Centaurus Therapeutics.

Source:
Journal reference:

Tippetts, T.S., et al. (2021) Cholesterol – the devil you know; ceramide – the devil you don’t. Trends in Pharmacological Sciences. doi.org/10.1016/j.tips.2021.10.001.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
SARS-CoV-2 hijacks cholesterol trafficking to fuel infection and evade immune responses