'Brain age' mostly relates to early life influences

Researchers in brain science and aging are very interested in measuring the health of a brain using a single observation. The most popular way to measure it is through a method called "brain age". This measurement, "brain age", has a lot of potential as can be used to detect and follow-up individuals at risk for dementia or cognitive (e.g. memory) problems in the future.

This measurement estimates the brain age of a brain scan and compares it to the person's actual age to determine whether their brain is aging faster or slower than expected for their age. Individuals can have brains that appear older or younger than their own age.

Often, researchers say individuals with older-looking brains have an accelerated brain aging, which means their brains age faster than expected. Older brain are essentially smaller, with bigger ventricles and thinner cortex.

However, since brain age relies on one brain scan taken at one point in time, it has not been clear whether it really measures brain aging or if it might capture brain differences that have been present throughout the individual's life.

This study demonstrates that the brain age score is in fact unable to predict, using a single brain scan, the pace of aging in the participants' brains. Instead, it reflects early-life conditions, some of them present even before you were born.

Scanned 1500 brains

In the current study the researchers measured the pace of brain aging in almost 1.500 adult individuals (from ages 20 to 90 years of age) by scanning their brains several times over a long period of time (up to 10 years). They coupled this with data on their birth weight and genetics from the UK and Lifebrain biobanks.

Firstly, they found that estimated brain age did not strongly relate to the rate of brain aging in adults. In other words, a single estimate of brain age cannot tell you how an individual's brain is changing over time.

Secondly, they found that estimated higher brain age is associated with lower birth weight and a genetic disposition of an individual to have smaller brains, bigger ventricles and, thinner cortex compared to other individuals.

Early-life influences on brain age

The results suggests that a person's brain age reflect early-life influences on brain structure, and only to a very modest degree reflects brain changes in middle and old adulthood.

So why do some people's brain age faster than normal?

Individuals with older-looking brains do not necessarily present accelerated aging and deteriorations. Rather, older brains most likely reflect normal differences that were already present early in life and that remained constant throughout the lifespan. We showed these differences can be both genetic and environmental as birth-weight partially reflects the «womb» environment."

Didac Vidal-Pineiro, lead author of the study, University of Oslo

Implications for neuroscience

The results show the need to rely on longitudinal data (several scans from the same individual, over time) whenever the goal is to understand changes in brain and cognition in aging.

Source:
Journal reference:

Vidal-Pineiro, D., et al. (2021) Individual variations in ‘brain age’ relate to early-life factors more than to longitudinal brain change. eLife. doi.org/10.7554/eLife.69995.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Maternal stress and depression alter infant DNA, with potential lifelong impact