Study finds rhinovirus reduces SARS-CoV-2 replication in airway epithelial cells

A recent study conducted at the University of Washington and the Seattle Children’s Research Institute, USA, has demonstrated that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection induces a significantly lower interferon response than rhinovirus infection.

Study: Airway epithelial interferon response to SARS-CoV-2 is inferior to rhinovirus and heterologous rhinovirus infection suppresses SARS-CoV-2 replication. Image Credit: Corona Borealis Studio/ShutterstockStudy: Airway epithelial interferon response to SARS-CoV-2 is inferior to rhinovirus and heterologous rhinovirus infection suppresses SARS-CoV-2 replication. Image Credit: Corona Borealis Studio/Shutterstock

This news article was a review of a preliminary scientific report that had not undergone peer-review at the time of publication. Since its initial publication, the scientific report has now been peer reviewed and accepted for publication in a Scientific Journal. Links to the preliminary and peer-reviewed reports are available in the Sources section at the bottom of this article. View Sources

Moreover, pre-infection with rhinovirus significantly reduces the replication of SARS-CoV-2 in airway epithelial cells.


A preprint version of the study is available on the bioRxiv* server, while the article undergoes peer review.

Background

SARS-CoV-2, the causative pathogen of coronavirus disease 2019 (COVID-19), is an enveloped RNA virus of the human beta-coronavirus family that primarily affects airway epithelial cells.

Unlike other common cold viruses such as alpha-coronaviruses and rhinoviruses, SARS-CoV-2 suppresses both systemic and mucosal type I and type III interferon responses, which are vital host innate immune responses required for the suppression of viral replication.

According to the available literature, infection of airway epithelium with human rhinoviruses causes a significant increase in anti-viral interferon response, which increases the expression of SARS-CoV-2 host cell entry receptor, namely angiotensin-converting enzyme 2 (ACE2). This indicates that simultaneous infection of epithelial cells with SARS-CoV-2 and rhinovirus might have synergistic consequences.    

In the current study, scientists have evaluated the dynamics of type I and type III interferon responses in human airway epithelial cells following SARS-CoV-2 or rhinovirus infection.

Moreover, they have investigated whether pre-infection with rhinovirus can modulate the propagation of subsequent SARS-CoV-2 infection.


Study design

The scientists collected airway epithelial cells from children (age: 6 – 18 years) and older adults (age: 60 – 75 years) and differentiated them to generate organotypic primary airway epithelial cell cultures.

The cultures were mono-infected with SARS-CoV-2 or rhinovirus to determine the virus-specific interferon response.
In addition, the impact of rhinovirus pre-infection on SARS-CoV-2 replication was determined by infecting the cultures first with rhinovirus and subsequently with SARS-CoV-2.

To directly assess the effect of interferon signaling on SARS-CoV-2 replication, a separate set of experiments were conducted by pre-treating the cultures with recombinant interferon β1 and interferon λ2, followed by infection with SARS-CoV-2.


Important observations

In primary cultures generated from pediatric and adult cells, a significant difference in the rate of SARS-CoV-2 replication was observed between donors. Despite this difference, SARS-CoV-2 exhibited a 100-times higher replication efficiency than rhinovirus in primary airway epithelial cell cultures. However, no significant difference in SARS-CoV-2 replication was observed between pediatric and adult cultures. Similarly, no difference in viral replication was observed between cultures generated from children with asthma and healthy children.


Interferon response

In mono-infected cultures, significantly higher expressions of interferon β1, interferon λ2, and CXCL10 genes were observed following rhinovirus infection compared to that following SARS-CoV-2 infection. A similar trend was observed in protein expression.


In pediatric and adult cultures successively infected with rhinovirus and SARS-CoV-2, a significant reduction in SARS-CoV-2 replication was observed after 96 hours of infection. A similar reduction in viral replication was observed in cultures pretreated with interferon β1 or interferon λ2.


Mechanism of escaping host innate immune response

In the innate immune system, pattern recognition receptors play a vital role in sensing viral RNA and subsequently inducing a cascade of signaling events that ultimately lead to induction of type I and type III interferon responses. An optimal interferon response is the key to eliminating invading viruses at the early stage of infection.

In this study, the expression of IFIH1/MDA5, a pattern recognition receptor, was assessed in SARS-CoV-2- or rhinovirus-infected cultures to understand the mechanism of immune evasion by SARS-CoV-2.

The findings revealed that rhinovirus infection causes a significantly higher expression of IFIH1/MDA5 (more than 2-fold) compared to SARS-CoV-2 infection. This observation indicates that SARS-CoV-2 evades the host's innate immune response by suppressing viral sensing by pattern recognition receptors.


Study significance

The study reveals that the interferon response induced by SARS-CoV-2 in airway epithelial cells is significantly lower than that induced by rhinovirus. Moreover, prior exposure to rhinovirus or recombinant interferons can significantly reduce the SARS-CoV-2 replication in airway epithelial cells.
As observed in the study, SARS-CoV-2 gains replication fitness in epithelial cells by suppressing the viral sensing mechanism of the innate immune system.

This news article was a review of a preliminary scientific report that had not undergone peer-review at the time of publication. Since its initial publication, the scientific report has now been peer reviewed and accepted for publication in a Scientific Journal. Links to the preliminary and peer-reviewed reports are available in the Sources section at the bottom of this article. View Sources

Journal references:

Article Revisions

  • Apr 29 2023 - The preprint preliminary research paper that this article was based upon was accepted for publication in a peer-reviewed Scientific Journal. This article was edited accordingly to include a link to the final peer-reviewed paper, now shown in the sources section.
Dr. Sanchari Sinha Dutta

Written by

Dr. Sanchari Sinha Dutta

Dr. Sanchari Sinha Dutta is a science communicator who believes in spreading the power of science in every corner of the world. She has a Bachelor of Science (B.Sc.) degree and a Master's of Science (M.Sc.) in biology and human physiology. Following her Master's degree, Sanchari went on to study a Ph.D. in human physiology. She has authored more than 10 original research articles, all of which have been published in world renowned international journals.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Dutta, Sanchari Sinha Dutta. (2023, April 29). Study finds rhinovirus reduces SARS-CoV-2 replication in airway epithelial cells. News-Medical. Retrieved on January 22, 2025 from https://www.news-medical.net/news/20211124/Study-finds-rhinovirus-reduces-SARS-CoV-2-replication-in-airway-epithelial-cells.aspx.

  • MLA

    Dutta, Sanchari Sinha Dutta. "Study finds rhinovirus reduces SARS-CoV-2 replication in airway epithelial cells". News-Medical. 22 January 2025. <https://www.news-medical.net/news/20211124/Study-finds-rhinovirus-reduces-SARS-CoV-2-replication-in-airway-epithelial-cells.aspx>.

  • Chicago

    Dutta, Sanchari Sinha Dutta. "Study finds rhinovirus reduces SARS-CoV-2 replication in airway epithelial cells". News-Medical. https://www.news-medical.net/news/20211124/Study-finds-rhinovirus-reduces-SARS-CoV-2-replication-in-airway-epithelial-cells.aspx. (accessed January 22, 2025).

  • Harvard

    Dutta, Sanchari Sinha Dutta. 2023. Study finds rhinovirus reduces SARS-CoV-2 replication in airway epithelial cells. News-Medical, viewed 22 January 2025, https://www.news-medical.net/news/20211124/Study-finds-rhinovirus-reduces-SARS-CoV-2-replication-in-airway-epithelial-cells.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
SARS-CoV-2 spike protein found lingering in brain regions