Green seaweed extract exhibits anti-SARS-CoV-2 activity in vitro

Currently available antiviral drugs for the treatment of coronavirus disease 2019 (COVID-19) are neither broadly accepted nor highly effective. Therefore, there is a pressing need to find biomolecules and synthetic compounds exhibiting antiviral properties for effective COVID-19 treatment.

Study: Fighting SARS-CoV-2 with green seaweed Ulva sp. extract: extraction protocol predetermines crude ulvan extract anti-SARS-CoV-2 inhibition properties in in vitro Vero-E6 cells assay. Image Credit: Chokniti Khongchum / Shutterstock.com

This news article was a review of a preliminary scientific report that had not undergone peer-review at the time of publication. Since its initial publication, the scientific report has now been peer reviewed and accepted for publication in a Scientific Journal. Links to the preliminary and peer-reviewed reports are available in the Sources section at the bottom of this article. View Sources

Background

Macroalgae, or seaweed, which are marine multicellular organisms encompassing several thousand species, are previously known to exhibit antiviral properties. Several studies have suggested that seaweed sulfated polysaccharides (SSPS), located in the cell wall of seaweeds, play a vital role in their defense against pathogens and other opportunistic organisms.

The effectiveness of inhibitory effects of SSPS on viral replication under in vitro conditions has also been known for more than 60 years. Subsequently, they are effective against several enveloped ribonucleic acid (RNA) viruses, including the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).

The antiviral properties exhibited by SSPS, a polysaccharide, against SARS-CoV-2 partially correlate with the presence of sulfonate groups and partly with its structural diversity and high charge density of its sulfated polymer. All these structural and functional aspects help SSPS efficiently bind to the proteins located on the surface of viruses like SARS-COV-2.

About the study

The authors of a recently published study on the Peerj* preprint server investigated the antiviral activities of SSPS extracted from a cultivated green seaweed Ulva sp. to demonstrate the anti-SARS-CoV-2 activity of ulvans. The extraction was carried out with the help of an in vitro cytopathic effect (CPE) reduction assay using Vero E6 cells. These cells express the angiotensin-converting enzyme 2 (ACE2) receptor, to which the SARS-CoV-2 virus typically binds.

The researchers used two distinct extraction protocols including hydrochloric acid (HCl) and ammonium oxalate (AOx) extraction protocols. The extraction protocols changed the ulvan extracts qualitatively and quantitatively.

Subsequently, the extracted ulvans had different purity, molecular weight (MW) distribution, sulfate content, and bioactivity. The team analyzed the composition of extracts using infrared spectroscopy, carbon, hydrogen, nitrogen, and sulfur (CHNS) elemental analysis, as well as size exclusion (SE) and anion exchange (AE) chromatography.

Differential antiviral activity by SSPS

The researchers used several advanced analytical methodologies such as Fourier-transform infrared (FT-IR) spectroscopy analyses, SE chromatography, and AE chromatography to analyze crude Ulva sp. extracts. They found that the AOx and HCl extraction protocols of Ulva sp. resulted in mixtures of compounds having a different distribution of MW, overall molecular charges, and nitrogen-containing contaminating molecules. Both the extracts exhibited slightly different antiviral activity, thereby indicating variability in the biological activity of SSPS compounds obtained through two different extraction protocols.

The AOx extracts showed positive in vitro antiviral activity, as demonstrated by their ability to protect VERO E6 cells against the cytopathic effect of the SARS-CoV-2 as a result of a higher charge density on SSPS biopolymers, higher average MWs compared to HCl-based extracts and the flexibility of the polysaccharide backbone.

Further, these results indicated that only a specific fraction of this AOx-based extract is active against SARS-CoV-2. To this end, this fraction exhibited an 11.3-fold difference in its maximum inhibition activity against SARS-CoV-2 as compared to the HCl-based extracts. Furthermore, these AOx-based extracts, compared to the HCl-based extracts, exhibited a higher level of alkaloids, peptides, proteins, and nucleic acids fragments.

These nitrogen-containing contaminating compounds could be responsible for the difference in the antiviral activity of the two extracts. Interestingly, lectins, co-extracted with the SSPS from the Ulva sp., could also be used to exhibit antiviral activities, including against SARS-CoV-2.

Future challenges and conclusion

This current study is just a starting point, as it would be challenging to develop thorough bioassay-guided fractionation approaches for the isolation and precise identification of the active components in AOx-based SSPS extracts in the future. Also, future in vivo studies will have to address the challenge of delivering the active fractions of Ulva sp. crude extract.

Despite global vaccination campaigns, it is crucial to find new antiviral candidates against SARS-CoV-2 infection for two reasons. One, SARS-CoV-2 is continuously producing new mutant strains that exhibit resistance to both vaccine-based immunity and known antivirals. Second, the vast antiviral activity of certain SSPS presents an opportunity to develop broadly active and highly potent antivirals with high specific activity against certain viruses, including SARS-CoV-2.

The current study provides experimental evidence that Ulva sp. could be a promising antiviral as a source of SSPS, as its crude extract could direct the development of natural product-based therapeutic agents against SARS-CoV-2.

This news article was a review of a preliminary scientific report that had not undergone peer-review at the time of publication. Since its initial publication, the scientific report has now been peer reviewed and accepted for publication in a Scientific Journal. Links to the preliminary and peer-reviewed reports are available in the Sources section at the bottom of this article. View Sources

Journal references:
  • Preliminary scientific report. Shefer, S., Robin, A., Chemodanov, A., et al. (2021). Fighting SARS-CoV-2 with green seaweed Ulva sp. extract: extraction protocol predetermines crude ulvan extract anti-SARS-CoV-2 inhibition properties in in vitro Vero-E6 cells assay. Peer Journal 9(e12398). doi:10.7717/peerj.12398. https://peerj.com/articles/12398/.
  • Peer reviewed and published scientific report. Shefer, Shai, Arthur Robin, Alexander Chemodanov, Mario Lebendiker, Robert Bostwick, Lynn Rasmussen, Michael Lishner, Michael Gozin, and Alexander Golberg. 2021. “Fighting SARS-CoV-2 with Green Seaweed Ulva Sp. Extract: Extraction Protocol Predetermines Crude Ulvan Extract Anti-SARS-CoV-2 Inhibition Properties in in Vitro Vero-E6 Cells Assay.” PeerJ 9 (November): e12398. https://doi.org/10.7717/peerj.12398https://peerj.com/articles/12398/.

Article Revisions

  • May 9 2023 - The preprint preliminary research paper that this article was based upon was accepted for publication in a peer-reviewed Scientific Journal. This article was edited accordingly to include a link to the final peer-reviewed paper, now shown in the sources section.
Neha Mathur

Written by

Neha Mathur

Neha is a digital marketing professional based in Gurugram, India. She has a Master’s degree from the University of Rajasthan with a specialization in Biotechnology in 2008. She has experience in pre-clinical research as part of her research project in The Department of Toxicology at the prestigious Central Drug Research Institute (CDRI), Lucknow, India. She also holds a certification in C++ programming.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Mathur, Neha. (2023, May 09). Green seaweed extract exhibits anti-SARS-CoV-2 activity in vitro. News-Medical. Retrieved on January 22, 2025 from https://www.news-medical.net/news/20211202/Green-seaweed-extract-exhibits-anti-SARS-CoV-2-activity-in-vitro.aspx.

  • MLA

    Mathur, Neha. "Green seaweed extract exhibits anti-SARS-CoV-2 activity in vitro". News-Medical. 22 January 2025. <https://www.news-medical.net/news/20211202/Green-seaweed-extract-exhibits-anti-SARS-CoV-2-activity-in-vitro.aspx>.

  • Chicago

    Mathur, Neha. "Green seaweed extract exhibits anti-SARS-CoV-2 activity in vitro". News-Medical. https://www.news-medical.net/news/20211202/Green-seaweed-extract-exhibits-anti-SARS-CoV-2-activity-in-vitro.aspx. (accessed January 22, 2025).

  • Harvard

    Mathur, Neha. 2023. Green seaweed extract exhibits anti-SARS-CoV-2 activity in vitro. News-Medical, viewed 22 January 2025, https://www.news-medical.net/news/20211202/Green-seaweed-extract-exhibits-anti-SARS-CoV-2-activity-in-vitro.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
COVID-19 infection linked to increased cases of ME/CFS