Study finds T cell response mostly conserved against SARS-CoV-2 Omicron variant following infection or vaccination

The Omicron variant of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has shown itself to be a very efficient escape variant and more infectious by far compared to the Delta variant. A new preprint available on the preprint server medRxiv* examines the extent of protection offered by T cell responses to primary vaccination and/or natural infection with the virus.

Study: T cell reactivity to the SARS-CoV-2 Omicron variant is preserved in most but not all prior infected and vaccinated individuals. Image Credit: Puwadol Jaturawutthichai/ShutterstockStudy: T cell reactivity to the SARS-CoV-2 Omicron variant is preserved in most but not all prior infected and vaccinated individuals. Image Credit: Puwadol Jaturawutthichai/Shutterstock

Background

This news article was a review of a preliminary scientific report that had not undergone peer-review at the time of publication. Since its initial publication, the scientific report has now been peer reviewed and accepted for publication in a Scientific Journal. Links to the preliminary and peer-reviewed reports are available in the Sources section at the bottom of this article. View Sources

Omicron is posing a huge challenge to the world by its ability to reinfect those immunized by two doses of currently available vaccines and those with a history of prior infection due to its ability to resist neutralization by antibodies raised to the earlier variants. Most therapeutic antibodies have also been found to fail to neutralize this variant.

The administration of an additional vaccine dose, homologous or heterologous, has proved to boost antibody levels across all variants, but the duration of immunity is yet to be fixed. The question remains whether the adaptive cellular response can provide added protection from Omicron infection and symptomatic disease.

This question is important when dealing with the current challenge as well as for predicting the course of future pandemics. T cell responses are usually correlated with mild disease, both in terms of frequency and activation level. When CD4+ T cells are activated early in the course of the post-vaccine course, both humoral and cellular antibodies are generated in a synchronized manner.

Similar is the case with CD8+ T cells, linked to the seamless production of long-term immunity to the virus and preventing severe disease. These cells are clonally expanded in bronchoalveolar lavage (BAL) fluid in mild disease, along with CD8+ T cell reactivity to viral epitopes and the rapid clearance of the virus. When selectively removed from recovered primates, protective immunity was relatively lower.

It is to be expected that T cells would continue to show effective antiviral effects because they are directed to multiple epitopes over the whole viral proteome vs. the spike target of the vaccine-induced antibodies.

What did the study show?

On examining the samples taken from individuals who had been infected, vaccinated, or both, it was found that T cell responses, whether circulating effector cells or CD4+ and CD8+ memory T cells, remained unchanged to Omicron as to other variants, in most cases.

However, about one in five individuals with infection and/or vaccination history showed a reduction in effector and memory T cell recognition of the Omicron spike protein vs. the wildtype spike. This was most obvious with CD8+ T cells reactive to the spike protein and was higher than that observed with the Delta variant.

The determinants of the magnitude of the immune response were a history of prior SARS-CoV-2 infection, the duration since the second dose of the vaccine, and an additional booster dose. The booster dose did not completely compensate for the reduction in Omicron recognition by the T cells. However, they did increase the titer of antibodies to the wildtype and Omicron spike.

T cell reactivity against wildtype and Omicron spike was lower after vaccination than after infection and highest in those with a history of vaccination and prior infection. There was a small decrease over time.

T cell reactivity with a median value of 275 and 220 was observed against wildtype and Omicron non-spike epitopes in all individuals following prior infection, irrespective of vaccination status. In vaccinated individuals, this was 1 and 0, but those infected and vaccinated showed values of 160 and ~240, respectively. This shows a high correlation between Omicron and wildtype spike-directed effector T cell responses and those towards the spike protein in both variants.

After the additional booster dose, effector T cell responses increased by over 1 log, with 20-fold increases against both wildtype and Omicron variants. Still, Omicron reactivity remained more than 50% lower in about a tenth of the samples despite the additional booster. Such reductions were more common with Omicron than with the Delta.

The proliferation of antigen-specific T cells is a correlate of functional T cell responses and of cytotoxic responses. Accordingly, CD8+ T cell responses were measured and found to be decreased compared to the wildtype in 40% of individuals who had recovered and been vaccinated. Conversely, CD4+ proliferation in response to Omicron spike remained mostly intact, except for approximately one in ten individuals who showed a reduction by over 50%.

Neither age nor sex, nor type of vaccine, had any effect on T cell responses, but proliferative CD8+ responses were decreased for Omicron compared to the wildtype. Therefore, the decreased reactivity in some individuals to this variant is mainly due to the reduction in this compartment.

Even when Omicron neutralization was undetectable, effector T cell responses to this variant were observed.

What are the implications?

The immune responses to SARS-CoV-2 infection or COVID-19 vaccination, or both, involve humoral and cellular immunity, the latter comprising both effector T cell and memory T cell responses. These recognize viral epitopes that may undergo mutation. The current study showed that existing effector T cell reactivity to the spike and non-spike viral proteins towards Omicron was mostly intact and increased by an additional vaccine dose.

However, when individual responses were examined, a subset of reduced responses was visible, with respect to Omicron but not Delta. This was mainly attributable to the spike-directed CD8+ T cell proliferative response against Omicron. This is an interesting finding since the Omicron spike is largely unchanged from earlier variants but may reflect the effect of the 36 mutations in this protein.

The changes in residues may drive T cell escape via the ability to bypass HLA-restricted receptor recognition. Overall, however, despite the evident escape from antibody-mediated neutralization seen with Omicron, T cell immunity continues to operate relatively intact, even in the absence of neutralizing antibodies.

T cell responses are linked to mild disease following SARS-CoV-2 infection and appear to drive the effectiveness of immunity following natural infection and vaccination against Omicron, even when neutralizing antibodies are not detectable. In this regard, natural infection appeared to cause a higher T cell response, in both effector and memory cell compartments, with a broad target including spike and non-spike proteins.

This could be because infection leads to different antigen kinetics and exposures than the vaccines. Overall, these findings help understand why Omicron induces less severe disease than the earlier variants.

The number of mutations in the viral nucleocapsid, membrane, envelope, and open reading frame 3A proteins is far less than the spike. Correspondingly preserved T cell reactivity was observed against non-spike protein compared to the spike. The former may be key to developing effective new vaccines against the virus, especially as they induce neutralizing antibody and T cell responses against highly conserved sites.

Such strategies “may yield more durable T cell immunity capable of providing broad protection against future variants.”

This news article was a review of a preliminary scientific report that had not undergone peer-review at the time of publication. Since its initial publication, the scientific report has now been peer reviewed and accepted for publication in a Scientific Journal. Links to the preliminary and peer-reviewed reports are available in the Sources section at the bottom of this article. View Sources

Journal references:

Article Revisions

  • May 10 2023 - The preprint preliminary research paper that this article was based upon was accepted for publication in a peer-reviewed Scientific Journal. This article was edited accordingly to include a link to the final peer-reviewed paper, now shown in the sources section.
Dr. Liji Thomas

Written by

Dr. Liji Thomas

Dr. Liji Thomas is an OB-GYN, who graduated from the Government Medical College, University of Calicut, Kerala, in 2001. Liji practiced as a full-time consultant in obstetrics/gynecology in a private hospital for a few years following her graduation. She has counseled hundreds of patients facing issues from pregnancy-related problems and infertility, and has been in charge of over 2,000 deliveries, striving always to achieve a normal delivery rather than operative.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Thomas, Liji. (2023, May 10). Study finds T cell response mostly conserved against SARS-CoV-2 Omicron variant following infection or vaccination. News-Medical. Retrieved on January 21, 2025 from https://www.news-medical.net/news/20220111/Study-finds-T-cell-response-mostly-conserved-against-SARS-CoV-2-Omicron-variant-following-infection-or-vaccination.aspx.

  • MLA

    Thomas, Liji. "Study finds T cell response mostly conserved against SARS-CoV-2 Omicron variant following infection or vaccination". News-Medical. 21 January 2025. <https://www.news-medical.net/news/20220111/Study-finds-T-cell-response-mostly-conserved-against-SARS-CoV-2-Omicron-variant-following-infection-or-vaccination.aspx>.

  • Chicago

    Thomas, Liji. "Study finds T cell response mostly conserved against SARS-CoV-2 Omicron variant following infection or vaccination". News-Medical. https://www.news-medical.net/news/20220111/Study-finds-T-cell-response-mostly-conserved-against-SARS-CoV-2-Omicron-variant-following-infection-or-vaccination.aspx. (accessed January 21, 2025).

  • Harvard

    Thomas, Liji. 2023. Study finds T cell response mostly conserved against SARS-CoV-2 Omicron variant following infection or vaccination. News-Medical, viewed 21 January 2025, https://www.news-medical.net/news/20220111/Study-finds-T-cell-response-mostly-conserved-against-SARS-CoV-2-Omicron-variant-following-infection-or-vaccination.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
PIN1 protein found to be a significant driver of bladder cancer