Study finds overexpression of 3 SARS-CoV-2 genes could globally compromise transcriptome of human pluripotent stem cell-derived cardiomyocytes

In a recent study posted to the bioRxiv* preprint server, whole messenger RNA (mRNA)-seq was used to investigate the global effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral genes Nsp6, Nsp8, and M on the transcriptome of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs).

Study: SARS-CoV-2 Viral Genes Compromise Survival and Functions of Human Pluripotent Stem Cell-derived Cardiomyocytes via Reducing Cellular ATP Level. Image Credit: FOTOGRIN/ShutterstockStudy: SARS-CoV-2 Viral Genes Compromise Survival and Functions of Human Pluripotent Stem Cell-derived Cardiomyocytes via Reducing Cellular ATP Level. Image Credit: FOTOGRIN/Shutterstock

Low adenosine triphosphate (ATP) levels can affect intracellular Ca2+ signaling and cardiomyocytes (CM) contractility. Researchers subsequently tried pharmacological techniques to increase the cellular ATP levels of hPSC-CMs overexpressing Nsp6, Nsp8, or M.

*Important notice: bioRxiv publishes preliminary scientific reports that are not peer-reviewed and, therefore, should not be regarded as conclusive, guide clinical practice/health-related behavior, or treated as established information.

Cardiac symptoms are prevalent in coronavirus disease 2019 (COVID-19) patients, and they play a significant role in total mortality. SARS-CoV-2 can infect the human myocardium, and hPSC-CMs are susceptible to infection.

The study

In the present study, researchers overexpressed three SARS-CoV-2 genes - Nsp6, Nsp8, and M - in hPSC-derived CMs. They cultured human embryonic stem cell (hESC) line H9 and human-induced PSC (hiPSC) line S3 in mTesR1 102 medium and differentiated cardiomyocytes. Whole mRNA-sequencing was used to evaluate total RNA for quality and quantity.

The researchers sequenced pooled cDNA libraries and generated approximately 30-40M 118 reads per library. Co-immunoprecipitation mass spectrometry (Co-IP-MS) was performed on the total cell proteins extracted, and Western blotting was used to analyze Co-IP protein samples.

Data comparison between the gene overexpression and control groups was conducted with the help of an unpaired two-tailed t-test.

Results

The study findings show that ATP hemostasis impairment may play a key role in SARS-CoV-2 gene-induced CM damage in the heart and other organs/tissues that are SARS-CoV-2 targets. Notably, while both Nsp6OE, Nsp8OE, and MOE infection and SARS-CoV-2 infection resulted in concordant transcriptomic changes in hPSC-CMs, SARS-CoV-2 infection was responsible for 70% of differential expression genes (DEGs), implying that the other SARS-CoV-2 genes may also influence the transcriptome of human CMs through different targets or mechanisms.

As SARS-CoV-2 virus-induced pathways were linked to apoptosis, gene transcription, and several metabolic processes, the findings suggest that at least some other SARS-CoV-2 genes may contribute to CM damage and impact the metabolism of human CMs.

The vulnerability of hPSC-CMs to individual SARS-CoV-2 genes was determined in this investigation. Nsp6 and Nsp8 are the SARS-CoV-2 non-structural proteins. M, the amplest structural protein in the viral particle, is the structural protein of SARS-CoV-2.

The researchers discovered that forcing Nsp6, Nsp8, or M expression was enough to cause apoptosis and dysfunction in hPSC-CMs, which phenocopied SARS-CoV-2 infected hPSC-CMs from prior studies. The whole mRNA-seq demonstrated global transcriptional alterations of Nsp6OE, Nsp8OE, and MOE human embryonic stem cell (hESC)-CMs compared to control hESC-CMs, especially with differentially expressed genes enriched in activated cellular damage and immunological responses, as well as reduced calcium/gap junction signaling. These findings suggest that exogenous SARS-CoV-2 viral genes could significantly affect the gene expression patterns of human CMs, potentially leading to CM abnormalities in patients with COVID-19.

The researchers discovered that Nsp6, Nsp8, and M interacted with ATPase subunits and affected the cellular ATP level in hPSC-derived CMs by examining their interactome in hESC-CMs. The study findings point to ATP homeostasis playing a key role in SARS-CoV-2-induced tissue damage in CMs and other SARS-CoV-2-sensitive tissue cells in the lung and kidney, while the mechanisms by which Nsp6, Nsp8, or M could hijack ATPase are still unknown.

Heart muscle cells consume a lot of energy due to their constant contractions, making them one of the most sensitive cell types to a lack of ATP supply. Consequently, the researchers examined pharmaceutical techniques to increase cellular ATP levels and revealed that two Food and Drug Administration (FDA)-approved medications, ivermectin, and meclizine, greatly decreased SARS-CoV-2 gene-induced electrical dysfunctions and cell death in human CMs.

Despite the fact that ivermectin is used to treat parasitic infections, it has been discovered to be a mitochondrial ATP protector in CMs and boost mitochondrial ATP generation in human CMs, which was confirmed in this investigation. Meclizine may raise ATP levels in hPSC-CMs, preventing cell death caused by the SARS-CoV-2 gene.

Conclusion

Overall, the researchers identified the global negative effects of SARS-CoV-2 genes Nsp6, Nsp8, and M on the entire transcriptome and interactome of hPSC-CMs, defined the critical role of ATP level reduction caused by SARS-CoV-2 genes in CM death and functional abnormalities, and investigated potential pharmaceutical approaches to alleviate SARS-CoV-2 genes-induced CM injury and abnormalities.

Global interactome analysis finds Nsp6, Nsp8, and M all interact with ATPase subunits, leading to significantly reduced cellular ATP level of hPSC-CMs.”

*Important notice: bioRxiv publishes preliminary scientific reports that are not peer-reviewed and, therefore, should not be regarded as conclusive, guide clinical practice/health-related behavior, or treated as established information.

Journal reference:
Saurabh Chaturvedi

Written by

Saurabh Chaturvedi

Saurabh Chaturvedi is a freelance writer from Jaipur, India. He is a gold medalist in Masters in Pharmaceutical Chemistry and has extensive experience in medical writing. He is passionate about reading and enjoys watching sci-fi movies.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Chaturvedi, Saurabh. (2022, January 26). Study finds overexpression of 3 SARS-CoV-2 genes could globally compromise transcriptome of human pluripotent stem cell-derived cardiomyocytes. News-Medical. Retrieved on November 21, 2024 from https://www.news-medical.net/news/20220126/Study-finds-overexpression-of-3-SARS-CoV-2-genes-could-globally-compromise-transcriptome-of-human-pluripotent-stem-cell-derived-cardiomyocytes.aspx.

  • MLA

    Chaturvedi, Saurabh. "Study finds overexpression of 3 SARS-CoV-2 genes could globally compromise transcriptome of human pluripotent stem cell-derived cardiomyocytes". News-Medical. 21 November 2024. <https://www.news-medical.net/news/20220126/Study-finds-overexpression-of-3-SARS-CoV-2-genes-could-globally-compromise-transcriptome-of-human-pluripotent-stem-cell-derived-cardiomyocytes.aspx>.

  • Chicago

    Chaturvedi, Saurabh. "Study finds overexpression of 3 SARS-CoV-2 genes could globally compromise transcriptome of human pluripotent stem cell-derived cardiomyocytes". News-Medical. https://www.news-medical.net/news/20220126/Study-finds-overexpression-of-3-SARS-CoV-2-genes-could-globally-compromise-transcriptome-of-human-pluripotent-stem-cell-derived-cardiomyocytes.aspx. (accessed November 21, 2024).

  • Harvard

    Chaturvedi, Saurabh. 2022. Study finds overexpression of 3 SARS-CoV-2 genes could globally compromise transcriptome of human pluripotent stem cell-derived cardiomyocytes. News-Medical, viewed 21 November 2024, https://www.news-medical.net/news/20220126/Study-finds-overexpression-of-3-SARS-CoV-2-genes-could-globally-compromise-transcriptome-of-human-pluripotent-stem-cell-derived-cardiomyocytes.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Vitamin D receptor activation slows cell overgrowth in pulmonary hypertension