Observational analysis of nucleocapsid and spike antibody responses post-SARS-CoV-2 infection

In the early stages of the pandemic, it was thought that antibodies produced post-infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) provide a certain degree of protection against reinfection for at least six months. SARS-CoV-2 is the causal agent of the coronavirus disease 2019 (COVID-19) pandemic. To assess the longevity of detectability, a better understanding of antibody dynamics following infection is required.

Study: Nucleocapsid and spike antibody responses post virologically confirmed SARS-CoV-2 infection: An observational analysis in the Virus Watch community cohort. Image Credit: Kateryna Kon/ShutterstockStudy: Nucleocapsid and spike antibody responses post virologically confirmed SARS-CoV-2 infection: An observational analysis in the Virus Watch community cohort. Image Credit: Kateryna Kon/Shutterstock

This news article was a review of a preliminary scientific report that had not undergone peer-review at the time of publication. Since its initial publication, the scientific report has now been peer reviewed and accepted for publication in a Scientific Journal. Links to the preliminary and peer-reviewed reports are available in the Sources section at the bottom of this article. View Sources

In a new study published on the medRxiv* preprint server, scientists aimed at furthering our understanding of anti-Nucleocapsid and anti-Spike responses over time. To do so, they studied both antibody detection and titers to narrow down on factors contributing to seropositivity and waning post-infection.

Background

More information on antibody waning is needed to aid the interpretation of seroprevalence studies, which provide a measure of cumulative incidence, accounting for asymptomatic infections. COVID-19 vaccines only stimulate anti-S. Measurement of both anti-S and anti-N antibodies is required to distinguish antibodies derived from natural infection and vaccination. Seroprevalence studies cannot specify reliably how long these antibodies remain in circulation post-infection. Having this information could be beneficial for modeling approaches influencing the response to the pandemic.

Key findings

The current study investigated anti-S and anti-N trends in individuals with antibody results from 1 to 540 days since PCR confirmed infection. Researchers observed that approximately 4 out of 5 individuals were seropositive for anti-N at any point between 0 to 269 days after testing positive for COVID-19. 35-49-year-olds showed higher odds of a positive anti-N result than individuals aged 18 and 34 years.

The peak proportion in positivity for anti-N and median antibody level was observed to be 120-269 days and 90-119, respectively. Men showed a higher proportion of seropositivity and median antibody levels than women from 120 days onwards. A similar pattern was observed in individuals aged 50 years or above, compared to the younger cohort of 18-49-year-olds. Vaccinated individuals showed a lower median anti-N and higher anti-S 30-269 days post-infection. 

Scientists stated that antibody positivity could be influenced by the viral load during infection. The data presented here are from a community cohort study, which means that the symptom profiles could be less severe among the participants when contrasted with hospital-based longitudinal studies.

It was observed that 35-49-year-olds were more likely to be seropositive when compared to 18-34-year-olds. While assessing anti-N responses, scientists observed a difference between age categories 18-49 and 50+ on days 120-269 and 270+. Individuals aged 18-49 years had an earlier peak and antibody waning. Anti-N positivity was observed longer in older people who had significantly more comorbidities and, therefore, had a higher likelihood of experiencing the severe disease.

The proportion of seropositive anti-N samples was 42.6% between days 0-29. This increased to 80% from day 30 onwards. These numbers are lower than other studies that considered hospitalized patients for the study. The difference in anti-N as observed in the data was disaggregated by sex, with earlier peak and waning in females. A meta-analysis showed that men were 2.41 times more at risk of developing severe disease than women.

As Virus Watch is a community cohort study, researchers did not use symptom severity in the analysis. Finally, there was evidence of anti-N waning in both proportions of detectable anti-N in samples and median anti-N titers. This is crucial while contemplating the use of anti-N as an alternative to anti-S for seroprevalence studies in populations with high vaccination rates.

Strengths and limitations

The sample constructed for this study was extremely rich in terms of size and the fact that it spanned various age groups and captured multiple underlying health conditions. A highly sensitive, widely used validated commercial assay was used to note serial antibody measurements. 

One limitation of the study is that a large fraction of the data is self–reported and, therefore, amenable to reporting bias. Individuals may only volunteer information they feel is relevant or necessary, thus, limiting researcher discretion. It should also be noted that self-reporting could lead to data entry errors. Next, a large share of the data was collected at registration and did not consider that participants’ health conditions might have changed. 

Conclusion

Scientists concluded that seroprevalence studies on anti-N alone may underestimate the true cumulative incidence of infection. They showed a decline in anti-N levels from 120 days onwards and, therefore, provided new insights into the limitations of seroprevalence studies. As the duration of anti-N positivity is influenced by age and sex, serosurveillance might require shorter time windows of testing post-SARS-CoV-2 infection.

This news article was a review of a preliminary scientific report that had not undergone peer-review at the time of publication. Since its initial publication, the scientific report has now been peer reviewed and accepted for publication in a Scientific Journal. Links to the preliminary and peer-reviewed reports are available in the Sources section at the bottom of this article. View Sources

Journal references:

Article Revisions

  • May 11 2023 - The preprint preliminary research paper that this article was based upon was accepted for publication in a peer-reviewed Scientific Journal. This article was edited accordingly to include a link to the final peer-reviewed paper, now shown in the sources section.
Dr. Priyom Bose

Written by

Dr. Priyom Bose

Priyom holds a Ph.D. in Plant Biology and Biotechnology from the University of Madras, India. She is an active researcher and an experienced science writer. Priyom has also co-authored several original research articles that have been published in reputed peer-reviewed journals. She is also an avid reader and an amateur photographer.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Bose, Priyom. (2023, May 11). Observational analysis of nucleocapsid and spike antibody responses post-SARS-CoV-2 infection. News-Medical. Retrieved on January 06, 2025 from https://www.news-medical.net/news/20220204/Observational-analysis-of-nucleocapsid-and-spike-antibody-responses-post-SARS-CoV-2-infection.aspx.

  • MLA

    Bose, Priyom. "Observational analysis of nucleocapsid and spike antibody responses post-SARS-CoV-2 infection". News-Medical. 06 January 2025. <https://www.news-medical.net/news/20220204/Observational-analysis-of-nucleocapsid-and-spike-antibody-responses-post-SARS-CoV-2-infection.aspx>.

  • Chicago

    Bose, Priyom. "Observational analysis of nucleocapsid and spike antibody responses post-SARS-CoV-2 infection". News-Medical. https://www.news-medical.net/news/20220204/Observational-analysis-of-nucleocapsid-and-spike-antibody-responses-post-SARS-CoV-2-infection.aspx. (accessed January 06, 2025).

  • Harvard

    Bose, Priyom. 2023. Observational analysis of nucleocapsid and spike antibody responses post-SARS-CoV-2 infection. News-Medical, viewed 06 January 2025, https://www.news-medical.net/news/20220204/Observational-analysis-of-nucleocapsid-and-spike-antibody-responses-post-SARS-CoV-2-infection.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Breakthrough in immunology: AbMAP’s novel approach to antibody modeling