Measuring T cell responses to SARS-CoV-2 vaccination and infection in healthcare workers with two different assays

The measurement of immune responses in partially and fully vaccinated individuals is desirable for comparing vaccination regimens, evaluating immunocompromised individuals, monitoring responses to emerging variants of concern, and determining the need for boosters as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccinations are rapidly rolled out across global healthcare systems.

Study: Comparison of two T cell assays to evaluate T cell responses to SARS-CoV-2 following vaccination in naïve and convalescent healthcare workers. Image Credit: Juan Gaertner/ShutterstockStudy: Comparison of two T cell assays to evaluate T cell responses to SARS-CoV-2 following vaccination in naïve and convalescent healthcare workers. Image Credit: Juan Gaertner/Shutterstock

Immune response monitoring can help drive coronavirus disease 2019 (COVID-19) vaccine deployment plans, reducing the likelihood of infection and illness severity while also allowing for improved resource allocation. A variety of cross-sectional and prospective cohort studies of healthcare workers (HCWs) have been established to track immunological responses in people who have acquired immunity via vaccines or infections.

This news article was a review of a preliminary scientific report that had not undergone peer-review at the time of publication. Since its initial publication, the scientific report has now been peer reviewed and accepted for publication in a Scientific Journal. Links to the preliminary and peer-reviewed reports are available in the Sources section at the bottom of this article. View Sources

The PITCH Research (Protective Immunity from T-cells in Healthcare Workers) is a UK multi-centre prospective, observational cohort study in Oxford, Birmingham, Liverpool, Newcastle, and Sheffield that looks at T-cell responses in SARS-CoV-2 infection acquired through vaccination and/or infection. This setting was used by researchers to assess the use of the Oxford Immunotec T-SPOT Discovery SARS-CoV-2 assay (OI T-SPOT), as well as T cell measurement by the in-house IFN ELISpot assay using the PITCH protocol, which has been harmonized across the five PITCH centers.

The purpose of this study was to compare the Oxford Immunotec T-SPOT Discovery SARS-CoV-2 assay (OI TSPOT) with the in-house PITCH ELISpot for reporting T cell responses specific to SARS-CoV-2 spike and structural proteins. The ELISpot method is used in both experiments. Oxford Immunotec introduced the OI T-SPOT assay, an example of a commercial interferon-gamma release assay (IGRA), 15 years ago as a diagnostic test for Mycobacterium tuberculosis (T-SPOT.TB test).

A preprint version of this study, which is yet to undergo peer review, is available on the medRxiv* server.

The study

The OI T-SPOT and PITCH ELISpot assays showed T cell responses to spike antigens after vaccination, with the PITCH assay recording greater responses. In the naive cohort, median spike-specific T cell responses evaluated by OI Panel 1+2 and OI Panel 14 were 28 and 40 SFU/106 peripheral blood mononuclear cells (PBMCs), respectively, 6.0 and 4.2-fold lower than PITCH total spike at 2 dosage + 4 weeks. Although there was no statistically significant difference between OI Panel 1 and 2, median responses were numerically lower for OI Panel 1 and 2.

The median T cell response to SARS-CoV-2 M+NP in SARS-CoV-2 infection-naive HCWs at dose 2 + 4 weeks is 0 SFU/106 PBMCs in OI T-SPOT and 7 SFU/106 PBMCs in PITCH ELISpot. Both assays show significantly larger responses in previously infected cohorts than in naive samples at each time point, as expected. Because natural infection entails exposure to the whole SARS-CoV-2 proteome, including M+NP, only previously infected participants are predicted to develop T cell responses specific to SARS-CoV-2 structural proteins.

Vaccination with either BNT162b Pfizer/BioNTech or ChAdOx1 nCoV-19 AZD1222 exposes naive individuals to just SARS-CoV-2 spike protein; therefore, T cell responses to SARS-CoV-2 non-spike proteins should be negative. Some 'nave' volunteers, on the other hand, could have been exposed to SARS-CoV-2 without symptoms or seroconversion. Overall, this data support using both assays to detect changes in these responses between cohorts based on infection status.

Correlations between spike-specific T cell responses recorded by OI Panel 1+2, Panel 14, and PITCH total spike were examined at 1 dosage + 10 weeks and 2 doses + 4 weeks to further investigate the use of OI T-SPOT. At doses 1 + 10 weeks and 2 + 4 weeks, the observed correlation between OI spike panels and PITCH total spike is low to moderate, with the strongest correlation between OI Panel 14 and PITCH total spike at dose 2 + 4 weeks and the lowest correlation between OI Panel 1+2 and PITCH total spike at dose 2 + 4 weeks.

Panel 1+2 and Panel 14 on OI have a substantial correlation at both time points, as expected. Furthermore, because the correlations with PITCH total spike are similar in OI Panel 1+2 and OI Panel 14, either readout can be utilized to assess T cell responses to the SARS-CoV-2 spike. T cell responses to M+NP revealed by OI T-SPOT, and PITCH ELISpot had weak correlations.

Implications

The use of the OI assay for longer follow-up periods after vaccination and in immunocompromised individuals has to be evaluated further. Further research to increase its sensitivity could improve its utility in studying poor responders. T cell function can be measured in various ways, including antigen-specific interferon-gamma responses. Overall, the OI T-SPOT assay provides researchers with an effective and standardized method for comparing vaccine platforms, dosage techniques, and research projects.

This news article was a review of a preliminary scientific report that had not undergone peer-review at the time of publication. Since its initial publication, the scientific report has now been peer reviewed and accepted for publication in a Scientific Journal. Links to the preliminary and peer-reviewed reports are available in the Sources section at the bottom of this article. View Sources

Journal references:

Article Revisions

  • May 11 2023 - The preprint preliminary research paper that this article was based upon was accepted for publication in a peer-reviewed Scientific Journal. This article was edited accordingly to include a link to the final peer-reviewed paper, now shown in the sources section.
Colin Lightfoot

Written by

Colin Lightfoot

Colin graduated from the University of Chester with a B.Sc. in Biomedical Science in 2020. Since completing his undergraduate degree, he worked for NHS England as an Associate Practitioner, responsible for testing inpatients for COVID-19 on admission.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Lightfoot, Colin. (2023, May 11). Measuring T cell responses to SARS-CoV-2 vaccination and infection in healthcare workers with two different assays. News-Medical. Retrieved on December 29, 2024 from https://www.news-medical.net/news/20220210/Measuring-T-cell-responses-to-SARS-CoV-2-vaccination-and-infection-in-healthcare-workers-with-two-different-assays.aspx.

  • MLA

    Lightfoot, Colin. "Measuring T cell responses to SARS-CoV-2 vaccination and infection in healthcare workers with two different assays". News-Medical. 29 December 2024. <https://www.news-medical.net/news/20220210/Measuring-T-cell-responses-to-SARS-CoV-2-vaccination-and-infection-in-healthcare-workers-with-two-different-assays.aspx>.

  • Chicago

    Lightfoot, Colin. "Measuring T cell responses to SARS-CoV-2 vaccination and infection in healthcare workers with two different assays". News-Medical. https://www.news-medical.net/news/20220210/Measuring-T-cell-responses-to-SARS-CoV-2-vaccination-and-infection-in-healthcare-workers-with-two-different-assays.aspx. (accessed December 29, 2024).

  • Harvard

    Lightfoot, Colin. 2023. Measuring T cell responses to SARS-CoV-2 vaccination and infection in healthcare workers with two different assays. News-Medical, viewed 29 December 2024, https://www.news-medical.net/news/20220210/Measuring-T-cell-responses-to-SARS-CoV-2-vaccination-and-infection-in-healthcare-workers-with-two-different-assays.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Nutrient metabolism regulates T cell exhaustion and therapy potential