New approach for extensive screening of monoclonal antibody clones against multiple myeloma cells

Multiple myeloma (MM) is a largely incurable cancer of plasma cells with an extremely poor prognosis. However, investigators from Japan have recently found that a common component of amino acid transporters, CD98 heavy chain, represents an effective monoclonal antibody target in treating MM.

In a study published this month in Science Translational Medicine, researchers from Osaka University have revealed a new approach that involves extensive screening of monoclonal antibody clones against primary human tumor samples. The aim was to identify cancer-specific conformational epitopes on ubiquitous proteins that cannot be identified by transcriptome or proteome analyses.

Some patients with MM show relapse in disease often due to immune-evading mutations that arise, making the cancer cells resistant to treatment. New target antigens are therefore urgently needed to develop a multi-targeted approach that can circumvent immune evasion and thereby avoid relapse of disease.

Extensive previous efforts have focused on targeting cancer-specific cell surface antigens identified by transcriptome or proteome analyses. But these efforts may have missed cancer-specific antigen epitopes formed by covalent, enzymatic modification of proteins (i.e., posttranslational modifications), such as glycosylation, or conformational changes. To widen the search for novel target antigens, Hasegawa and colleagues screened for cancer-specific monoclonal antibodies and then characterized their target-presenting antigens.

By screening over 10,000 monoclonal antibody clones raised against MM cells, we identified R8H283, a monoclonal antibody that recognizes the CD98 heavy chain protein, which is part of an amino acid transporter. Despite the CD98 heavy chain being present on all cells, the antibody only bound to MM cells. This selectivity may reflect the differing glycosylation patterns between normal cells and MM cells."

Kana Hasegawa, lead author of the study

In-depth analysis of the R8H283 antibody revealed specific binding to CD98 heterodimers, not CD98 heavy chain monomers. Heterodimer complexes, comprising the CD98 heavy chain and light chain, modulate the uptake of amino acids for the production of immunoglobulin. "Interestingly, the glycoforms of CD98 heavy chain in the heterodimers present on normal leukocytes were distinct from those present on MM cells, which we think explains the lack of R8H283 reactivity to normal leukocytes," explains Naoki Hosen, senior author. "This is significant because it means that R8H283 antibody can exert anti-MM effects without damaging normal host cells."

To assess the effectiveness of the R8H283 antibody in an animal model, the researchers employed a mouse MM xenograft model. They found that R8H283 injections prolonged the survival of mice. This confirmed that R8H283 is a candidate for monoclonal antibody-based therapy for MM.

Taken together, these findings highlight an effective approach by which cancer-specific conformational epitopes on widely expressed proteins, which are unable to be detected by transcriptome or proteome analyses, may be identified via the screening of primary tumor samples. This methodology may be useful in broadening the array of cancer-specific surface antigens available for future drug development.

Source:
Journal reference:

Hasegawa, K., et al. (2022) Selective targeting of multiple myeloma cells with a monoclonal antibody recognizing the ubiquitous protein CD98 heavy chain. Science Translational Medicine. doi.org/10.1126/scitranslmed.aax7706.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Researchers develop new antibody with potential to treat several types of cancer