The relationship between highly conserved residues in the SARS CoV fusion peptide and their role in coordinating calcium binding for viral entry

In a recent study posted to the bioRxiv* preprint server, researchers evidenced the significance of calcium (Ca2+) in mediating the interaction between the coronaviruses (CoVs) fusion peptide (FP) and host cell membrane to provide insights into the mechanisms of viral entry.

Study: The interaction of calcium ions with specific residues in the SARS-CoV fusion peptide and the regulation of viral infectivity. Image Credit: Juan Gaertner/Shutterstock
Study: The interaction of calcium ions with specific residues in the SARS-CoV fusion peptide and the regulation of viral infectivity. Image Credit: Juan Gaertner/Shutterstock

*Important notice: bioRxiv publishes preliminary scientific reports that are not peer-reviewed and, therefore, should not be regarded as conclusive, guide clinical practice/health-related behavior, or treated as established information.

Background

CoVs family is comprised of highly pathogenic viruses, including SARS-CoV, Middle Eastern respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The FP domain in the spike (S) protein of several CoVs, including SARS-CoV-2, is a highly conserved region that contains a hydrophobic LLF motif and many negatively charged amino acids that interact with Ca2+ ions to facilitate viral entry by interacting with the host membrane.

Several past studies have suggested that the Food and Drug Association (FDA)-approved Ca2+-channel blockers may be repurposed and used as coronavirus disease 2019 (COVID-19) therapeutics; however, how exactly Ca2+ ions mediate viral-host cell fusion events is unknown.

About the study

In the current analysis,  researchers used mutagenesis studies to examine the FP1/FP2 region of CoVs. Additionally, they used molecular dynamic (MD) simulations to structurally interpret the interactions on the host membrane that regulated viral infectivity.

To this end, they synthesized FP mutants - D802A, D812A, E821A, D825A, E801, and D830A by making single charge-to alanine substitutions in CoV FP. Following transient expression of these FP mutants in Vero6 cells, their accumulation became comparable to the wild-type (WT) strain’s S protein levels, after which the researchers retrieved them using a cell surface biotinylation assay.

Treatment with trypsin exposed their S1/S2 cleavage site, and then they used a syncytia assay to test for fusion competency of FP mutants. All the single FP charged-to-alanine mutants exhibited fusion defects, as evidenced by the low number of fused VeroE6 cells, or syncytia, indicating that negatively charged amino acids residues within the FP contributed to its functioning.

They incorporated SARS-CoV-2 pseudoparticles with WT and single-charged-to-alanine mutant FPs that mimicked an in vivo environment facilitating examination of the functionality of these mutants. Luminescence indicated successful pseudoparticle entry/infectivity in host cells.

Study findings

A strong luminescence signal indicated that WT pseudoparticles had high fusion competency and hence successfully entered the VeroE6 cells (host) at physiological calcium levels. Similarly, pseudoparticles infected with E821A and D825A-mutants resulted in luminescence levels comparable to WT-containing pseudoparticles. This finding indicated that D821/D825 pair were inhibitory to membrane insertion, whereas the D812/D821 residue pair facilitated membrane interaction.

Contrastingly, pseudoparticles infected with the D802A, D812A, or D830A mutants could not infect VeroE6 cells, resulting in lowered luminescence. Pseudoparticles containing either the D812A or D830A FP mutants were non-infectious in the presence or absence of extracellular Ca2+. These results also associated residues D812A and D830A in FP function.

Together, these findings suggested that when cellular Ca2+ levels remained undisturbed, loss of an individual negative charge at positions D802, D812, or D830 was sufficient to cause a significant decrease in infectivity. Pseudoparticles infected with D802A or D825A mutants showed even more reduced infectivity with depleting Ca2+ levels.

This finding suggested that multiple negatively charged residues in the FP were involved in Ca2+-binding, and the loss of a single negative charge did not completely disrupt viral infectivity. In other words, the loss of extracellular Ca2+ reflected the loss of additional electrostatic interactions needed for FP function, resulting in a further decrease in infectivity.

The researchers confirmed that Ca2+ interacted directly with the FP using biochemical and biophysical techniques. Likewise, isothermal calorimetry helped determine the stoichiometry of this interaction. MD simulations showed the FP’s modes of Ca2+-binding in 1:1 and 2:1 stoichiometries for SARS-CoV and MERS-CoV, respectively.

The circular dichroism (CD) measurements confirmed that the FP adopted a conformation with a higher degree of alpha helicity in the presence of calcium and membranes. In this context, electron spin resonance spectroscopy (ESR) results revealed that lipid ordering increased upon FP insertion to create favorable conditions for membrane fusion; likewise, an enhanced lipid ordering occurred in the presence of Ca2+. Notably, a chelating agent ethylene glycol tetra-acetic acid (EGTA) removed extracellular Ca2+ causing a 50% reduction in infectivity of WT FP-containing pseudoparticles.

Conclusions

Overall, the study demonstrated that the CoV FP region is highly dynamic. The Ca2+ ions most likely enabled FP to adopt a proper conformation via its negatively charged amino acid residues, a structural change conducive for its insertion into the host cell membrane. Subsequently, in a Ca2+-depleted environment, the authors observed a defect in membrane fusion related to membrane level S features and likely interacted directly with Ca2+ ions.

The study established that Ca2+ is necessary to promote viral entry across multiple coronaviruses, including SARS-CoV, MERS-CoV, and SARS-CoV-2. Yet, a detailed structural understanding of how Ca2+ ions stabilize the FP for membrane insertion is missing.

Nevertheless, negatively charged amino acid sequences highly conserved across many CoVs in the FP peptide are therapeutically vulnerable targets that could prove quite beneficial in developing new COVID-19 treatments.

*Important notice: bioRxiv publishes preliminary scientific reports that are not peer-reviewed and, therefore, should not be regarded as conclusive, guide clinical practice/health-related behavior, or treated as established information.

Journal reference:
Neha Mathur

Written by

Neha Mathur

Neha is a digital marketing professional based in Gurugram, India. She has a Master’s degree from the University of Rajasthan with a specialization in Biotechnology in 2008. She has experience in pre-clinical research as part of her research project in The Department of Toxicology at the prestigious Central Drug Research Institute (CDRI), Lucknow, India. She also holds a certification in C++ programming.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Mathur, Neha. (2022, March 09). The relationship between highly conserved residues in the SARS CoV fusion peptide and their role in coordinating calcium binding for viral entry. News-Medical. Retrieved on November 24, 2024 from https://www.news-medical.net/news/20220309/The-relationship-between-highly-conserved-residues-in-the-SARS-CoV-fusion-peptide-and-their-role-in-coordinating-calcium-binding-for-viral-entry.aspx.

  • MLA

    Mathur, Neha. "The relationship between highly conserved residues in the SARS CoV fusion peptide and their role in coordinating calcium binding for viral entry". News-Medical. 24 November 2024. <https://www.news-medical.net/news/20220309/The-relationship-between-highly-conserved-residues-in-the-SARS-CoV-fusion-peptide-and-their-role-in-coordinating-calcium-binding-for-viral-entry.aspx>.

  • Chicago

    Mathur, Neha. "The relationship between highly conserved residues in the SARS CoV fusion peptide and their role in coordinating calcium binding for viral entry". News-Medical. https://www.news-medical.net/news/20220309/The-relationship-between-highly-conserved-residues-in-the-SARS-CoV-fusion-peptide-and-their-role-in-coordinating-calcium-binding-for-viral-entry.aspx. (accessed November 24, 2024).

  • Harvard

    Mathur, Neha. 2022. The relationship between highly conserved residues in the SARS CoV fusion peptide and their role in coordinating calcium binding for viral entry. News-Medical, viewed 24 November 2024, https://www.news-medical.net/news/20220309/The-relationship-between-highly-conserved-residues-in-the-SARS-CoV-fusion-peptide-and-their-role-in-coordinating-calcium-binding-for-viral-entry.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Public trust in COVID-19 vaccine science influences vaccine uptake in the US