Animal study provides insights into how COVID-19 can lead to long-term pain

A new animal study has provided important insights into how COVID-19 SARS-CoV-2 -; the virus responsible for COVID-19 -; can lead to long-term pain. The new findings also point to a potential therapy for COVID-related pain.

A significant number of people suffering from long COVID experience sensory abnormalities, including various forms of pain. We used RNA sequencing to get a snapshot of the biochemical changes SARS-CoV-2 triggers in a pain-transmitting structure called dorsal root ganglia."

Randal (Alex) Serafini, MD/PhD candidate, Icahn School of Medicine at Mount Sinai, New York City

Using a hamster model of SARS-CoV-2 infection, the researchers found that infection left a gene expression signature in the dorsal root ganglia that remained even after the virus cleared. The signature matched gene expression patterns seen in pain caused by other conditions.

Serafini will present the new research at the American Society for Pharmacology and Experimental Therapeutics annual meeting during the Experimental Biology (EB) 2022 meeting, to be held April 2–5 in Philadelphia.

"Our findings could potentially lead to new therapies for patients suffering from acute and long COVID, as well as other pain conditions," said Serafini. "Our study also shows that SARS-CoV-2 causes long-term effects on the body in drastically new ways, further underscoring why people should try to avoid being infected."

The experiments involved a hamster model of intranasal COVID-19 infection that closely reflects symptoms experienced by people. The researchers observed that SARS-CoV-2-infected hamsters showed a slight hypersensitivity to touch early after infection, which became more severe over time, up to 30 days. They then performed similar experiments with the Influenza A virus to determine if other RNA viruses promote similar responses.

In contrast to SARS-CoV-2, Influenza A caused an early hypersensitivity that was more severe but faded by four days post-infection. Analysis of gene expression patterns in the dorsal root ganglia revealed that SARS-CoV-2 caused a more prominent change in expression levels of genes implicated in neuron-specific signaling processes compared to influenza.

Additional experiments showed that four weeks after recovering from viral infection, flu-infected hamsters had no signs of long-term hypersensitivity while SARS-CoV-2-infected hamsters showed worsened hypersensitivity, reflecting chronic pain. The hamsters that had recovered from SARS-CoV-2 had gene expression signatures similar to those seen in the dorsal root ganglia of mice affected by pain that was induced by inflammation or nerve injury.

To dive deeper into the molecular machinery associated with altered sensation in SARS-CoV-2-infected infected hamsters, the researchers applied bioinformatic analyses to the gene expression data they had obtained. The analysis predicted that SARS-CoV-2 downregulates the activity of several previously identified pain regulators and a protein called interleukin enhancer binding factor 3 (ILF3).

This downregulation occurs at times when pain behaviors in SARS-CoV-2-infected hamsters were very mild, despite heavy systemic inflammation. In contrast, Influenza A-induced hypersensitivity was severe at these timepoints. ILF3 has not yet been studied in the context of pain but is a potent cancer regulator.

Based on these findings, the researchers hypothesized that mimicking the acute effects of ILF3 could serve as a new pain treatment strategy. To test this prediction, the researchers administered a clinically tested anti-cancer drug that inhibits ILF3 activity. They found that it was indeed very effective at treating pain in a mouse model of localized inflammation.

"We think therapeutic candidates derived from our gene expression data, such as ILF3 inhibitors, could potentially target pain mechanisms that are specific to COVID patients, both acutely and chronically," said Serafini. "Interestingly, we saw a few cancer-associated proteins come up as predicted pain targets, which is exciting because many drugs have already been developed to act against some of these proteins and have been clinically tested. If we can repurpose these drugs, it could drastically cut down therapeutic development timeline."

The researchers are working to identify other compounds that could be repurposed while also keeping an eye out for novel compounds that might inhibit ILF3 activity.

This research was led by Alex Serafini and Justin Frere, MD/PhD candidates from the Icahn School of Medicine at Mount Sinai. Serafini is a student of Venetia Zachariou, PhD, professor of neuroscience at Mount Sinai and Frere is a student of Benjamin tenOever, PhD, professor of microbiology at New York University.

Randal (Alex) Serafini will present this research from 10 a.m.–12 p.m., Monday, April 4, in Exhibit/Poster Hall A-B, Pennsylvania Convention Center (Poster Board Number B24) (abstract) and 2:182:27 p.m., Tuesday, April 5, in Room 113 C (abstract). Contact the media team for more information or to obtain a free press pass to attend the meeting.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Incidence and risk factors of an invasive fungal lung infection among COVID-19 patients