Study demonstrates subset of vaccine-induced HLA-A*24:02-restricted T cells exhibits enhanced reactivity against the Omicron BA.1 variant

In a recent study posted to the bioRxiv* preprint server, researchers characterized vaccine-induced T cell response specific for spike (S) proteins of several severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants.

Study: The SARS-CoV-2 Omicron BA.1 spike G446S potentiates HLA-A*24:02-restricted T cell immunity. Image Credit: Dotted Yeti/Shutterstock
Study: The SARS-CoV-2 Omicron BA.1 spike G446S potentiates HLA-A*24:02-restricted T cell immunity. Image Credit: Dotted Yeti/Shutterstock

This news article was a review of a preliminary scientific report that had not undergone peer-review at the time of publication. Since its initial publication, the scientific report has now been peer reviewed and accepted for publication in a Scientific Journal. Links to the preliminary and peer-reviewed reports are available in the Sources section at the bottom of this article. View Sources

Background

Studies suggest that mutations outside and nearby immunodominant T cell epitopes affect human leukocyte antigen (HLA) binding and the T cell response against SARS-CoV-2 variants.

The proteasome degradation of intracellular SARS-CoV-2 proteins into peptides generates T cell epitopes. Some peptides are translocated into the endoplasmic reticulum (ER) and loaded onto HLA class I molecules via the transporter associated with antigen presentation (TAP). Subsequently, HLA class I complexes are transported to the plasma membrane, where they are presented for recognition by the cluster of differentiation 8 (CD8+) T cells.

It is noteworthy that three epitopes generated from SARS-CoV-2 S protein, viz., RF9, NF9, and QI9, bind strongly to HLA-A*24:02, a predominant HLA-I allele globally.

About the study

In the present study, researchers obtained peripheral blood mononuclear cells (PBMCs) from 29 individuals vaccinated with two doses of BNT162b2 or messenger ribonucleic acid (mRNA)-1273 vaccines. They stained PBMCs with HLA tetramers (peptides) and detected NF9/A24- and QI9/A24-specific T cells in 10/29 (34.5%) and 13/29 (44.8%) HLA-A*24:02+ vaccinated donors, respectively. However, only 2/29, i.e., 6.9% of donors had RF9/A24-specific T cells, thus indicating that CD8+ T cells specific for NF9/A24 and QI9/A24 were the predominant T cells in vaccinated individuals.

Furthermore, the researchers stimulated PBMCs from ten individuals with the NF9 or QI9 peptides to assess whether the NF9/A24- and QI9/A24-specific T cells identified SARS-CoV-2 variants. Additionally, they evaluated the upregulation of two activation markers, CD25 and CD137, in proliferating T cells after 14 days.

Study findings

The  Wilcoxon rank test showed that the percentages of CD25+ and CD137+ T cells after stimulation with the NF9 and QI9 peptides (median 3.5% and 4.5%) were significantly higher than in the absence of peptides. However, there was no significant difference in the cell frequencies, as detected by the Mann-Whitney test (p = 0.6453). These findings suggested that in BNT162b2 or mRNA-1273 vaccinated individuals, the NF9/A24 and QI9/A24 were the immunodominant epitopes presented by the HLA-A*24:02 allele.

Further, a TCR-based quantification assay estimated a three-fold increase in the presentation of the NF9 epitope on the surface of Omicron BA.1 S-expressing cells relative to that of the SARS-CoV-2 prototype. The N-terminal adjacent to the G446S mutation of the NF9 epitope in Omicron BA.1 S was responsible for enhancing NF9/A24-specific T cell recognition.

Amino acid (AA) mutations within and in the epitope-flanking region (here NF9) impact the generation of HLA class I-restricted peptides. Pre-treating Omicron BA.1 S-expressing cells with an inhibitor of tripeptidyl peptidase II (TPPII) reduced its recognition by T cells. The efficient generation of the NF9 epitope required TPPII-mediated removal of two to three amino acids from the N terminus of the epitope.

Recent studies used activation-induced marker (AIM) assays to evaluate the breadth of T cell responses to S proteins in vaccinated and COVID-19 convalescent individuals. However, these assays did not demonstrate the antiviral activity of individual T cells against SARS-CoV-2 variants of concern (VOCs), including the Delta and Omicron, and the effect of mutations on antigen presentation in SARS-CoV-2-infected cells.

In the current study, the researchers found that the G446S mutation in Omicron BA.1 S protein, located adjacent to the N terminus of the NF9 epitope (residues 448-456), was responsible for the efficient recognition of target cells expressing the Omicron BA.1 S. Additionally, the introduction of a serine at the 446 position of Omicron BA.1 S induced enhanced T cell recognition of the NF9 epitope. The enhanced T cell recognition showed a substantial reduction against Omicron BA.2 S and the prototype due to the absence of the G446S mutation.

Furthermore, the level of interferon-gamma (IFN-γ) production by the NF9-specific T cells was higher toward target cells expressing Omicron BA.1 S and lower toward cells expressing Delta S, due to the presence of an L452R mutation in the NF9 epitope in the Delta VOC.

Conclusions

Overall, the study results demonstrated that vaccine-induced T cells had enhanced capacity to recognize and cross-neutralize several SARS-CoV-2 variants, including the Omicron BA.1 sub-variant. Thus, the study findings could help with future vaccine development; likewise, a combination of assays could help evaluate vaccine efficacy against present and yet to emerge SARS-CoV-2 variants.

Future studies should determine how mutations in the S and other SARS-CoV-2 proteins affect antigen presentation for T cell recognition, providing better insights for vaccine design, especially vaccine antigens, to induce efficient cellular immunity.

This news article was a review of a preliminary scientific report that had not undergone peer-review at the time of publication. Since its initial publication, the scientific report has now been peer reviewed and accepted for publication in a Scientific Journal. Links to the preliminary and peer-reviewed reports are available in the Sources section at the bottom of this article. View Sources

Journal references:

Article Revisions

  • May 13 2023 - The preprint preliminary research paper that this article was based upon was accepted for publication in a peer-reviewed Scientific Journal. This article was edited accordingly to include a link to the final peer-reviewed paper, now shown in the sources section.
Neha Mathur

Written by

Neha Mathur

Neha is a digital marketing professional based in Gurugram, India. She has a Master’s degree from the University of Rajasthan with a specialization in Biotechnology in 2008. She has experience in pre-clinical research as part of her research project in The Department of Toxicology at the prestigious Central Drug Research Institute (CDRI), Lucknow, India. She also holds a certification in C++ programming.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Mathur, Neha. (2023, May 13). Study demonstrates subset of vaccine-induced HLA-A*24:02-restricted T cells exhibits enhanced reactivity against the Omicron BA.1 variant. News-Medical. Retrieved on January 11, 2025 from https://www.news-medical.net/news/20220420/Study-demonstrates-subset-of-vaccine-induced-HLA-A2402-restricted-T-cells-exhibits-enhanced-reactivity-against-the-Omicron-BA1-variant.aspx.

  • MLA

    Mathur, Neha. "Study demonstrates subset of vaccine-induced HLA-A*24:02-restricted T cells exhibits enhanced reactivity against the Omicron BA.1 variant". News-Medical. 11 January 2025. <https://www.news-medical.net/news/20220420/Study-demonstrates-subset-of-vaccine-induced-HLA-A2402-restricted-T-cells-exhibits-enhanced-reactivity-against-the-Omicron-BA1-variant.aspx>.

  • Chicago

    Mathur, Neha. "Study demonstrates subset of vaccine-induced HLA-A*24:02-restricted T cells exhibits enhanced reactivity against the Omicron BA.1 variant". News-Medical. https://www.news-medical.net/news/20220420/Study-demonstrates-subset-of-vaccine-induced-HLA-A2402-restricted-T-cells-exhibits-enhanced-reactivity-against-the-Omicron-BA1-variant.aspx. (accessed January 11, 2025).

  • Harvard

    Mathur, Neha. 2023. Study demonstrates subset of vaccine-induced HLA-A*24:02-restricted T cells exhibits enhanced reactivity against the Omicron BA.1 variant. News-Medical, viewed 11 January 2025, https://www.news-medical.net/news/20220420/Study-demonstrates-subset-of-vaccine-induced-HLA-A2402-restricted-T-cells-exhibits-enhanced-reactivity-against-the-Omicron-BA1-variant.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
T cells can completely prevent viral infections in humans