Study reports increased numbers of SARS-CoV-2-reactive T cells in individuals who were HCoV-reactive

Authorities in Wuhan, China, reported a spate of atypical pneumonia cases on December 31, 2019. The disease was dubbed coronavirus disease 19 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).

Study: Long-Term, CD4+ Memory T Cell Response to SARS-CoV-2. Image Credit: creativeneko/Shutterstock
Study: Long-Term, CD4+ Memory T Cell Response to SARS-CoV-2. Image Credit: creativeneko/Shutterstock

Background

According to recent studies, neutralizing antibody titers fall dramatically throughout the first eight months after symptom onset and fall by up to 53% after a year. An in-depth study of the development of cellular immunity will considerably assist in a better understanding of the dynamics of reinfections.

Previous research has found that SARS-CoV-2-specific T cell responses remained persistent for 8 to 10 months. The current vaccines used against SARS-CoV-2 only target viral host cell entry mechanisms such as the spike (S) glycoprotein and the receptor-binding domain. However, T cells respond to extra structural proteins such as envelope (E), membrane (M), and nucleocapsid (N) in previously infected patients (N).

About the study

In a recent study published in Frontiers in Immunology, a 9-month investigation was performed on a group of previously infected healthcare workers. T cell responses were measured to three SARS-CoV-2-associated antigens (S, M, and N), as well as the endemic coronaviruses HCoV-OC43 and HCoV-NL63.

The study included 36 patients who had previously been infected with SARS-CoV-2 and had an average age of 35.8 years, with 69.4% of them being female. A control group that had not been exposed was matched in age and gender. SARS-CoV-2 infection was confirmed by PCR test in 63.9% of previously infected participants, and 94.4% had a positive anti-SARS-CoV-2 antibody titer.

Findings

All of the previously affected individuals experienced minor disease. The most common symptoms were a loss of taste or smell and a headache. A dry cough and a fever were also regularly reported symptoms. Although SARS-CoV-2 infection was confirmed by PCR or antibody testing, 16% of participants reported no symptoms.

The percentages of SARS-CoV-2-specific T cells in peripheral blood mononuclear cells isolated from previously infected and unexposed people at three months post symptom onset were determined and compared. CD4+ T cells specific for the N-terminal (S-1) and C-terminal (S-2) spike glycoprotein peptide pools, as well as the membrane (M) and nucleocapsid (N) peptide pools, were found in higher numbers in previously infected people. At least one of the peptide pools elicited a response in 88.9% of the people tested. The S-1 and S-2 pools were recognized by around 60% of people, whereas the M peptide pool was recognized by 61.8% of people. 69.44% of previously infected people had the strongest and most common reaction, which was specific for N. 

The S glycoproteins generated by SARS-CoV-2 and the endemic coronaviruses HCoV-OC43 and HCoV-NL63 were tested for cross-reactivity. The previously infected cohort was separated into subgroups reactive or unreactive against either the N- or C-terminus of OC43 and NL63. The percentages of SARS-CoV-2 S-1- and S-2-specific T cells were assessed to investigate cross-reactivity between the HCoV and SARS-CoV-2 spike glycoproteins. Study subjects who reacted to OC43-1 and NL63-1 had a greater percentage of S-1-specific T cells.

Furthermore, compared to the HCoV-unreactive group, those subjects had a roughly two-fold higher reaction rate. A comparable impact was seen in the OC43-2-reactive subgroup. Compared to the non-reactive group, NL63-2-reactive T cells revealed just a minor change. Both C-terminal groups, on the other hand, showed higher rises in response rate than the N-terminal groups. The overall response rate of OC43-2-reactive participants increased by around two-fold, whereas that of NL63-2-reactive subjects increased by nearly three-fold.

The longevities of cellular and humoral responses of previously infected participants to SARS-CoV-2 were examined. Twenty-seven of the initial 36 infected patients were followed for nine months following initiation of symptoms. After nine months, the proportion of S-1, S-2, M, and N peptide pool-specific T lymphocytes declined marginally. Breaking down each individual's T cell response to the SARS-CoV-2 peptide pools indicated donor-specific T cell frequency variations. In some individuals, the proportion of reactive T cells grew with each visit, while in others, it decreased. 

Antigen recognition increased somewhat between 3 and 6 months, then declined by nine months. Following nine months, 74% of participants recognized at least one SARS-CoV-2 peptide pool. The N peptide pool induced a CD4+ T cell response in 70.4% of previously infected patients after three months, 92.3% at six months, and 55.6% at nine months, equivalent to the spike and membrane proteins.

Implications

This study shows that SARS-CoV-2 and HCoV cross-react in both previously infected and uninfected participants. It is unclear whether past HCoV immunity enhances defense against SARS-CoV-2. SARS-CoV-2-induced cellular immunity lasts up to 9 months. More research is needed to determine how long SARS-CoV-2-specific T cell reactivity can remain.

However, humoral immunity and SARS-CoV-2-specific antibody titers dramatically fall nine months after infection. Thus, T cell reactivity may be a better predictor of protective immunity. Adding structural SARS-CoV-2 protein sequences to the spike glycoprotein could boost the efficacy of COVID-19 mRNA vaccines in the future.

Journal reference:
Colin Lightfoot

Written by

Colin Lightfoot

Colin graduated from the University of Chester with a B.Sc. in Biomedical Science in 2020. Since completing his undergraduate degree, he worked for NHS England as an Associate Practitioner, responsible for testing inpatients for COVID-19 on admission.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Lightfoot, Colin. (2022, April 25). Study reports increased numbers of SARS-CoV-2-reactive T cells in individuals who were HCoV-reactive. News-Medical. Retrieved on November 23, 2024 from https://www.news-medical.net/news/20220425/Study-reports-increased-numbers-of-SARS-CoV-2-reactive-T-cells-in-individuals-who-were-HCoV-reactive.aspx.

  • MLA

    Lightfoot, Colin. "Study reports increased numbers of SARS-CoV-2-reactive T cells in individuals who were HCoV-reactive". News-Medical. 23 November 2024. <https://www.news-medical.net/news/20220425/Study-reports-increased-numbers-of-SARS-CoV-2-reactive-T-cells-in-individuals-who-were-HCoV-reactive.aspx>.

  • Chicago

    Lightfoot, Colin. "Study reports increased numbers of SARS-CoV-2-reactive T cells in individuals who were HCoV-reactive". News-Medical. https://www.news-medical.net/news/20220425/Study-reports-increased-numbers-of-SARS-CoV-2-reactive-T-cells-in-individuals-who-were-HCoV-reactive.aspx. (accessed November 23, 2024).

  • Harvard

    Lightfoot, Colin. 2022. Study reports increased numbers of SARS-CoV-2-reactive T cells in individuals who were HCoV-reactive. News-Medical, viewed 23 November 2024, https://www.news-medical.net/news/20220425/Study-reports-increased-numbers-of-SARS-CoV-2-reactive-T-cells-in-individuals-who-were-HCoV-reactive.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
SARS-CoV-2 hijacks cholesterol trafficking to fuel infection and evade immune responses