SARS-CoV-2 Omicron escapes immune response due to high ACE2 affinity and low antibody specificity

In a recent study published in the journal Vaccines, researchers revealed how severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) Omicron evades neutralizing antibodies (nAbs).

Two days after it was first reported on November 24, 2021, the World Health Organization (WHO) designated SARS-CoV-2 Omicron as a variant of concern (VOC). The WHO estimated a potentially higher risk of danger for the Omicron VOC given the high risk of COVID-19 pandemic perpetuating globally and a substantially higher R-value of Omicron than Delta VOC.

Preliminary studies revealed an elevated risk of reinfection and vaccine breakthrough infections with the Omicron variant. Nevertheless, the disease caused by the Omicron variant has been relatively mild, and health care institutions remain functional despite the enormous surge of infections. Therefore, it might be possible that the pandemic could end by the global spread of Omicron VOC and the resultant broad immunization with significantly decreased severity and mortality of the disease.

Study: Increased Receptor Affinity and Reduced Recognition by Specific Antibodies Contribute to Immune Escape of SARS-CoV-2 Variant Omicron. ​​​​​​​Image Credit: Orpheus FX / ShutterstockStudy: Increased Receptor Affinity and Reduced Recognition by Specific Antibodies Contribute to Immune Escape of SARS-CoV-2 Variant Omicron. ​​​​​​​Image Credit: Orpheus FX / Shutterstock

About the study

In the present study, researchers reported the mechanisms underlying the increased transmissibility and resistance to infection- or vaccine-induced antibodies of the SARS-CoV-2 Omicron variant. Serum samples were obtained from convalescent persons infected with SARS-CoV-2 Wuhan strain, doubly vaccinated subjects, and boosted individuals. Participants received BNT162b2 or mRNA-1273 messenger ribonucleic acid (mRNA) vaccines.

The binding kinetics of angiotensin-converting enzyme-2 (ACE2): receptor-binding domain (RBD) were evaluated. High precision streptavidin (SAX) biosensors were loaded with biotinylated ACE2 and later quenched with biocytin. Serial dilution of RBD in kinetics buffer (KB) was performed. Enzyme-linked immunosorbent assays (ELISAs) were performed, and a bio-layer interferometry (BLI)-based assay was used to test the ability of serum samples to compete with ACE2 to bind to RBDs of wildtype (WT), Delta, and Omicron variants.

Heat-inactivated serum samples were diluted and incubated with 100 median tissue culture infectious dose (TCID50) of SARS-CoV-2 WT, Delta, or Omicron variant. Next, this mixture (serum + virus) was added to Vero cells, incubated for four days, and checked for cytopathic effect (CPE). The authors expressed neutralizing titers as sera's highest dilution, completely inhibiting CPE. Statistical significance was measured using paired or unpaired Student's t-test.

​​​​​​​ACE2-spike interaction and mutations found in RBD of B.1.617.2 (Delta) and B.1.1.529 (Omicron). (A) S monomer (blue ribbon and surface) bound to ACE2 ectodomain (yellow surface). (B) Detail of (A), highlighting the mutated residues (orange sticks) in Delta. (C) Same as in (B) but highlighting the mutated residues in Omicron. From PDB files 6ACG and 2AJF.ACE2-spike interaction and mutations found in RBD of B.1.617.2 (Delta) and B.1.1.529 (Omicron). (A) S monomer (blue ribbon and surface) bound to ACE2 ectodomain (yellow surface). (B) Detail of (A), highlighting the mutated residues (orange sticks) in Delta. (C) Same as in (B) but highlighting the mutated residues in Omicron. From PDB files 6ACG and 2AJF.

Findings

The researchers observed an approximately two-fold increase in the binding affinity of RBDs of Delta and Omicron variants to ACE2 relative to RBD of SARS-CoV-2 WT. This increased affinity was due to the enhanced association rate and reduced dissociation rate. In addition, the immunoglobulin G (IgG) antibodies induced by natural infection exhibited poor recognition of mutant RBDs. In contrast, those elicited after two or three mRNA vaccine doses equally recognized RBDs of WT and Delta variant, but recognition of Omicron RBD was poor or diminished.

When the antibody titers' half-maximal optical density (OD50) was measured, the team observed a significant reduction of recognition of Omicron and Delta variants' RBD relative to WT RBD. Convalescent serum samples showed impaired recognition of Omicron RBD while no changes were noted for WT or Delta RBD. BLI experiments revealed profound differences across binding and inhibitory properties of different tested RBDs. Notably, the Omicron RBD binding (to ACE2) was lower than that of Delta RBD. Sera from boosted individuals showed the highest binding, followed by sera from double vaccinated subjects and convalescent individuals.

Furthermore, sera from convalescent subjects failed to inhibit ACE2-RBD binding at the tested concentration. Serum antibodies from recipients of two vaccine doses showed a mean inhibition of 28.5% and 27.3% against RBD of Delta and Omicron VOCs, respectively, without any statistical differences. Nevertheless, post-receipt of the booster dose, inhibitory potential amplified dramatically, albeit remained lower against Omicron (45%) than Delta variant (66%).

As inferred by CPE, the convalescent sera exhibited poor neutralizing capacity against all tested variants. Sera from double-vaccine recipients had comparable neutralizing titers against SARS-CoV-2 WT and Delta variant. However, neutralization was significantly lower against the Omicron variant than WT or Delta. This reduced potency was consistent for sera from boosted individuals.

Conclusions

In the current study, researchers assessed the differences exhibited by sera from three different types of subjects: convalescent subjects and primary and booster vaccination recipients. The findings showed improved binding affinity of Omicron RBD to ACE2 receptor, plausibly explaining the high infectivity of SARS-CoV-2 Omicron VOC. In addition, the researchers posit that Omicron VOC might have developed two mechanisms to evade nAbs.

First, the highly mutated RBD might mismatch with antibody responses, given that antibodies elicited by natural infection or vaccination are less specific for Omicron RBD, i.e., 'specificity escape.' Second, the higher affinity of Omicron RBD for ACE2 might present challenges for nAbs to compete with it, i.e., 'affinity escape.' Finally, although both Delta and Omicron VOCs exhibited higher affinity for ACE2, the combination of specificity- and affinity-escape resulted in a more pronounced reduction in neutralization.

Journal reference:
Tarun Sai Lomte

Written by

Tarun Sai Lomte

Tarun is a writer based in Hyderabad, India. He has a Master’s degree in Biotechnology from the University of Hyderabad and is enthusiastic about scientific research. He enjoys reading research papers and literature reviews and is passionate about writing.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Sai Lomte, Tarun. (2022, May 12). SARS-CoV-2 Omicron escapes immune response due to high ACE2 affinity and low antibody specificity. News-Medical. Retrieved on November 07, 2024 from https://www.news-medical.net/news/20220512/SARS-CoV-2-Omicron-escapes-immune-response-due-to-high-ACE2-affinity-and-low-antibody-specificity.aspx.

  • MLA

    Sai Lomte, Tarun. "SARS-CoV-2 Omicron escapes immune response due to high ACE2 affinity and low antibody specificity". News-Medical. 07 November 2024. <https://www.news-medical.net/news/20220512/SARS-CoV-2-Omicron-escapes-immune-response-due-to-high-ACE2-affinity-and-low-antibody-specificity.aspx>.

  • Chicago

    Sai Lomte, Tarun. "SARS-CoV-2 Omicron escapes immune response due to high ACE2 affinity and low antibody specificity". News-Medical. https://www.news-medical.net/news/20220512/SARS-CoV-2-Omicron-escapes-immune-response-due-to-high-ACE2-affinity-and-low-antibody-specificity.aspx. (accessed November 07, 2024).

  • Harvard

    Sai Lomte, Tarun. 2022. SARS-CoV-2 Omicron escapes immune response due to high ACE2 affinity and low antibody specificity. News-Medical, viewed 07 November 2024, https://www.news-medical.net/news/20220512/SARS-CoV-2-Omicron-escapes-immune-response-due-to-high-ACE2-affinity-and-low-antibody-specificity.aspx.

Comments

  1. Laurence Renshaw Laurence Renshaw Malaysia says:

    I see two major issues:
    (1) For the 'convalescent sera', it is essential to know which variant(s) caused the infection, as that strongly affects which variants there will be immunity to.
    (2/ Differentiating double-jabbed and boosted individuals implies (incorrectly, based on the data I've seen) that a third dose is qualitatively different from a second dose. The correct way to differentiate is by the time elapsed since the _last_ dose. Whether an individual had two or three or four doses _can_ be a proxy for time since last dose, if that's the only information you have, but it isn't a very reliable one.
    Both of those issues, but especially the first, reduce the value of the results and make it difficult to draw conclusions.

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New trial shows felzartamab reduces proteinuria in IgA nephropathy patients