Prevalence of SARS-CoV-2 infection during Omicron BA.2/BA.2.12.1 surge in New York

In a recent study posted to the medRxiv* pre-print server, researchers surveyed a representative sample of the adult population of New York City (NYC), United States (US), to determine the prevalence of coronavirus disease 2019 (COVID-19). The researchers also assessed the epidemiology of infection and uptake of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antivirals.

Study: The prevalence of SARS-CoV-2 infection and uptake of COVID-19 antiviral treatments during the BA.2/BA.2.12.1 surge, New York City, April-May 2022. Image Credit: Ivan Marc/Shutterstock
Study: The prevalence of SARS-CoV-2 infection and uptake of COVID-19 antiviral treatments during the BA.2/BA.2.12.1 surge, New York City, April-May 2022. Image Credit: Ivan Marc/Shutterstock

This news article was a review of a preliminary scientific report that had not undergone peer-review at the time of publication. Since its initial publication, the scientific report has now been peer reviewed and accepted for publication in a Scientific Journal. Links to the preliminary and peer-reviewed reports are available in the Sources section at the bottom of this article. View Sources

Background

The study was conducted soon after the surge of SARS-CoV-2 new variant of concern (VOC) Omicron's sub-lineages, BA.2/BA.2.12.1. Routine SARS-CoV-2 surveillance is crucial because lack of data hinders the detection of the surge in COVID-19 cases, and incomplete and biased data hampers understanding of the burden of SARS-CoV-2 infection. All this data is crucial to inform public health policies to mitigate viral transmission and limit the number of COVID-19 cases.

About the study

In the present study, researchers conducted a cross-sectional survey among 1,030 NYC adult residents from May 7 to 8, 2022, to determine the surge in COVID-19 cases with the official case counts in NYC between April 23 and May 8, 2022. During this time, the official SARS-CoV-2 case count in NYC was 49,253, and 20% of these cases were due to Omicron BA.2/BA.2.12.2.

The researchers enquired the survey participants about SARS-CoV-2 test outcomes, COVID-19 or flu-like symptoms, and whether they came in contact with infected individuals 14 days before the survey. As feasible, the survey participants completed web-based surveys or provided interactive voice responses. From those who self-reported a positive reverse transcription-polymerase chain reaction (RT-PCR) or rapid antigen test (RAT), the researchers also enquired about the awareness and use of SARS-CoV-2 antiviral medications.

The study estimates accounted for socio-demographic data, including each participant's vaccination and prior infection status, and geographical location. The researchers assessed the association between each factor and test status using Pearson’s chi-squared test.

Study findings

The study estimated the prevalence of COVID-19 in approximately 1.5 million NYC adults during the two-week study period, with close to 20% cases due to the highly transmissible Omicron BA.2.12.1 subvariant. The study estimate was about 31-fold higher than the official NYC case count and indicated a vast underestimate of the magnitude of this surge.

Due to the differences in SARS-CoV-2 exposure and behaviors among people, COVID-19 was more prevalent in those who received a booster shot compared to those who were either unvaccinated or fully vaccinated but not boosted. These findings could help correct biases in vaccine effectiveness (VE) studies.

Moreover, the authors observed that SARS-CoV-2 was more prevalent in individuals with hybrid protection than those with vaccination-induced protection (28.9% vs. 10.7%). The findings indicated that prior SARS-CoV-2 infection was a good marker for exposure during surges and risk compensation. Hence, these individuals should be prioritized for first, second, and subsequent COVID-19 vaccine doses to help reduce the risk of severe disease and death. Notably, the awareness and uptake of nirmatrelvir/ritonavir were also low among the adults with SARS-CoV-2 infection.

Conclusions

Overall, the study data dictate taking additional precautions to reduce the risk of infections among the people of NYC and shift the approach to public health surveillance for SARS-CoV-2. The surge in COVID-19 cases in the US due to Omicron BA.1 during December 2021 claimed over 187,000 lives in four months. At this time, 62% of the US population had received the primary COVID-19 vaccination, yet, the deadly infection overwhelmed the health care system. Unfortunately, the official case counts vastly underestimated the magnitude of NYC’s Omicron BA.2/BA.2.12.1 surge.

As the COVID-19 pandemic progresses, several factors shall influence the scale of infection and severity levels among those most vulnerable to developing severe COVID-19. These factors are likely to vary by region, variant properties, such as transmissibility, severity, immune evasion, level of attained immunity via vaccination or prior infection, the time gap between the advent of case surges, and accessing antiviral and monoclonal antibody treatments.

Since the COVID-19 pandemic is complex and ever-evolving, routine passive surveillance is inadequate to monitor and respond to the case surges. It demands more vigorous, timely, and reliable approaches that account for geographic and socio-demographic variances and prevent delays in detecting the actual burden of infection in the general population. Therefore, population-based survey data is crucial for gathering rapid information that addresses the limitations of traditional SARS-CoV-2 case surveillance, hospitalizations, and deaths.

This news article was a review of a preliminary scientific report that had not undergone peer-review at the time of publication. Since its initial publication, the scientific report has now been peer reviewed and accepted for publication in a Scientific Journal. Links to the preliminary and peer-reviewed reports are available in the Sources section at the bottom of this article. View Sources

Journal references:

Article Revisions

  • May 13 2023 - The preprint preliminary research paper that this article was based upon was accepted for publication in a peer-reviewed Scientific Journal. This article was edited accordingly to include a link to the final peer-reviewed paper, now shown in the sources section.
Neha Mathur

Written by

Neha Mathur

Neha is a digital marketing professional based in Gurugram, India. She has a Master’s degree from the University of Rajasthan with a specialization in Biotechnology in 2008. She has experience in pre-clinical research as part of her research project in The Department of Toxicology at the prestigious Central Drug Research Institute (CDRI), Lucknow, India. She also holds a certification in C++ programming.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Mathur, Neha. (2023, May 13). Prevalence of SARS-CoV-2 infection during Omicron BA.2/BA.2.12.1 surge in New York. News-Medical. Retrieved on November 23, 2024 from https://www.news-medical.net/news/20220530/Prevalence-of-SARS-CoV-2-infection-during-Omicron-BA2BA2121-surge-in-New-York.aspx.

  • MLA

    Mathur, Neha. "Prevalence of SARS-CoV-2 infection during Omicron BA.2/BA.2.12.1 surge in New York". News-Medical. 23 November 2024. <https://www.news-medical.net/news/20220530/Prevalence-of-SARS-CoV-2-infection-during-Omicron-BA2BA2121-surge-in-New-York.aspx>.

  • Chicago

    Mathur, Neha. "Prevalence of SARS-CoV-2 infection during Omicron BA.2/BA.2.12.1 surge in New York". News-Medical. https://www.news-medical.net/news/20220530/Prevalence-of-SARS-CoV-2-infection-during-Omicron-BA2BA2121-surge-in-New-York.aspx. (accessed November 23, 2024).

  • Harvard

    Mathur, Neha. 2023. Prevalence of SARS-CoV-2 infection during Omicron BA.2/BA.2.12.1 surge in New York. News-Medical, viewed 23 November 2024, https://www.news-medical.net/news/20220530/Prevalence-of-SARS-CoV-2-infection-during-Omicron-BA2BA2121-surge-in-New-York.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Futuristic AI-powered virtual lab designs potent SARS-CoV-2 nanobodies