UTSW study provides a potential avenue for the development of new antivirals against influenza

A collaborative study from UT Southwestern scientists has identified a new function for a protein called TAO2 that appears to be key to inhibiting replication of the influenza virus, which sickens millions of individuals worldwide each year and kills hundreds of thousands. The findings were published in PNAS.

"These results uncover new strategies for interfering with influenza virus replication, providing a potential avenue for the development of new antivirals against influenza," said Beatriz Fontoura, Ph.D., Professor of Cell Biology at UT Southwestern, whose lab studies the interplay between RNA viruses, such as influenza A virus, with their hosts. The study was led by Dr. Fontoura, together with first author and postdoctoral fellow Shengyan Gao, Ph.D., and Melanie H. Cobb, Ph.D., Professor of Pharmacology.

To replicate, influenza virus takes over parts of the host cell nucleus known as nuclear speckles, which then provide the virus an environment to express its genes. Dr. Fontoura and her colleagues, including experts in cell biology, molecular biology, and pharmacology, identified a novel role in regulating nuclear speckle assembly and function for the TAO2 kinase – a protein involved in transferring phosphate groups to other proteins.

We found that TAO2 is needed to maintain the physical integrity and function of nuclear speckles. Among the functions of nuclear speckles is regulation of key steps in gene expression, which are usurped by influenza virus at these compartments to support viral replication. Consequently, by down-regulating TAO2 levels – or its kinase activity – we were able to inhibit influenza virus replication without causing major toxic effects to the host cell."

Dr. Beatriz Fontoura, Ph.D., Professor of Cell Biology, UT Southwestern

Other UTSW researchers who contributed to this study include Matthew Esparza, Ishmael Dehghan, Ke Zhang, Kimberly Batten, Tolga Cagatay, Jerry W. Shay, Elizabeth J. Goldsmith, and Zhijian "James" Chen.

Dr. Goldsmith holds the Patti Bell Brown Professorship in Biochemistry. Dr. Shay is a Distinguished Teaching Professor and holds the Southland Financial Corporation Distinguished Chair in Geriatrics. Dr. Chen is Professor of Molecular Biology and Director of the Center for Inflammation Research at UTSW, a Howard Hughes Medical Institute Investigator, and winner of the 2019 Breakthrough Prize in Life Sciences as well as holder of the George L. MacGregor Distinguished Chair in Biomedical Science. Dr. Cobb holds the Jane and Bill Browning, Jr. Chair in Medical Science. Drs. Chen and Cobb are members of the National Academy of Sciences.

Source:
Journal reference:

Gao, S., et al. (2022) Nuclear speckle integrity and function require TAO2 kinase. PNAS. doi.org/10.1073/pnas.2206046119.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Protein-packed foods may not be as healthy as you think, study finds