DNA must be enormously compressed in sperm cells, study says

If you are moaning once again about your suitcase being far too small as your vacation approaches, you should take human sperm cells as an inspiration. During their production, they are faced with an almost insoluble task. They have to pack 23 DNA threads with a total length of one meter into a head with a diameter of just three-thousandths of a millimeter. And in the process, the delicate threads must not become entangled in an inextricable knot, nor must they tear.

We often sit on the suitcase to close it. The body resorts to a similar trick during spermatogenesis. Normally, DNA forms a comparatively loose tangle. In sperm cells, however, it is enormously compressed.

If DNA were to take up as much space as a watermelon under normal circumstances, sperm cells would then only be as big as a tennis ball."

Prof. Dr. Hubert Schorle, Institute of Pathology, University Hospital Bonn

DNA must be enormously compressed

Biologists call this process hypercondensation. In their loose state, DNA threads are wrapped around numerous spherical protein molecules, the histones. In this state, they resemble 23 tiny strings of pearls. During hypercondensation, the histones are first exchanged for transition proteins. In a subsequent step, these are replaced by so-called protamines. Due to their chemical composition, protamines exert a very strong attraction on DNA. The thread therefore wraps itself in very firm and tightly loops around the protamine

"Most mammals seem to produce only one type of protamine, PRM1," explains Dr. Lena Arévalo, a postdoctoral researcher in Schorle's group. "In humans, but also rodents like mice, it's different - they have a second type, PRM2." Exactly what this second protamine is needed for was not known until now. However, it was known that some parts of it are successively cut off during sperm development.

And it is precisely these cut-off parts that appear to be immensely important, according to the new study. When mice produce only a truncated PRM2 molecule that lacks the cut-off snippets, they are infertile. "The removal of transition proteins during hypercondensation is impaired," Arévalo says. "In addition, the condensation seems to proceed too quickly, causing the DNA strands to break."

Hope for therapies against male infertility

It is possible that a defective protamine 2 can also lead to infertility in males of our own species. The team now plans to investigate this hypothesis further. "There are only a few research groups that analyze the role of protamines in hypercondensation," says Schorle, who is also a member of the Transdisciplinary Research Area (TRA) "Life and Health" at the University of Bonn. "We are the only laboratory in the world to date that has succeeded in generation and breeding of both PRM1 and PRM2 deficient mouse lines which are now used to study the role of these proteins in spermatogenesis." In the medium term, this could also lead to new therapies against male infertility, the researcher hopes.

Source:
Journal reference:

Arévalo, L., et al. (2022) Loss of the cleaved-protamine 2 domain leads to incomplete histone-to-protamine exchange and infertility in mice. PLOS Genetics. doi.org/10.1371/journal.pgen.1010272.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study reveals why paternal mitochondria must be removed during early development